
CSE 331: Software Design & Implementation Fall 2025

Homework 4
Due: Friday, October 24th, 6pm

Task 1 – Off To the Cases! [26 pts]

In this problem, you will practice proving correctness of straight-line code using backward reasoning.

a) Use forward reasoning to fill in the assertions. Then, show that the code is correct by proving by
cases that P implies Q.

ttx ě 0 uu

if (x >= 8) {
tt uu

y = 3 * x - 9;

tt uu

} else {
tt uu

y = 20 - x;

tt uu

}
ttP : or uu

ttQ : y ě 12 uu

b) Use backward reasoning to fill in the assertions.

Fill in each blank by applying the rules exactly as taught in lecture. Then, if you want, you can
simplify the resulting assertion, but do not weaken it. (Use “Ø” to separate assertions as before.)

Then, show that the code is correct by proving by cases that P1 implies Q1 and P2 implies Q2.
Note: the older version asked to prove the implications above the if branch, which required a step
of forward reasoning. This has been changed.
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ttP : x ě 0 uu

if (x >= 8) {
ttP1 : x ą“ 8 uu

ttQ1 : uu

y = 3 * x - 9;

tt uu

} else {
ttP2 : x ă 8 uu

ttQ2 : uu

y = 20 - x;

tt uu

}
tt y ě 12 uu

c) Are the calculations you did in (b) the same as the ones in (a)? Why are they the same or not the
same?

d) Use forward reasoning to fill in assertions P1 and P2 and backward reasoning to fill in assertions
Q1 and Q2. Then, show that the code is correct by proving by calculation that P1 implies Q1 and
that P2 implies Q2.

ttx ě 0 uu

if (x >= 8) {
ttP1 : uu

ttQ1 : uu

y = 3 * x - 9;

tt uu

} else {
ttP2 : uu

ttQ2 : uu

y = 20 - x;

tt uu

}
tt y ě 12 uu

e) Proving the correctness in (d), where we mixed forward and backward reasoning, did not require
cases. Why was it not necessary in this case? Did not having cases save the number of calculations?
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Task 2 – Loops, I Did It Again [13 pts]

Suppose we define the set of binary digits as

type Digit :“ 0 | 1

Then, we can represent a number written in binary as the following list type:

type Digits :“ lastpDigitq | conspDigit,Digitsq

The following function, value : Digits Ñ Z translates a sequence of binary digits into the corre-
sponding integer value:

valueplastpdqq :“ d

valuepconspd,Rqq :“ d ` 2 valuepRq

For example, we can see that
valuepconsp1, consp1, lastp0qqqq

“ 1 ` 2 valuepconsp1, lastp0qqq

“ 1 ` 2p1 ` 2 valueplastp0qqq

“ 1 ` 2p1 ` 2 ¨ 0q

“ 1 ` 2p1 ` 0q

“ 1 ` 2

“ 3

Note that the binary representation of 3 is usually written 011, not 110, so this definition expects the
digits to be stored in the list in reversed order, with the least significant digit at the front. Such a
representation is called “little endian” (while the ordinary representation is “big endian”).
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We can represent the Digits data type as this Java class:

public class Digits {

public int digit;

public Digits next;

}

where next is null if the node is a “last” and non-null if it is a “cons”.

The following code claims to be the value of the digits in the variable L of type Digits:

ttL “ L0 uu

int b = 1;

int v = 0;

tt Inv: valuepL0q “ v ` b ¨ valuepLq uu

while (L.next != null) {
ttP1 : L “ conspd,Rq and . . . uu

v = v + b * L.digit;

b = 2 * b;

L = L.next;

}
ttP2 : L “ lastpdq and . . . uu

v = v + b * L.digit;

tt v “ valuepL0q uu

Inside the body of the loop, the assertion will start with L “ conspd,Rq in order to encode the fact that
L.next != null. The former is the mathematical equivalent of the latter code. Likewise, after the
loop, the assertion will start with L “ lastpdq as that is the mathematical equivalent of the fact that
L.next == null. The variable d refers to the digit stored in L.digit and R refers to L.next.

a) Prove that the invariant is true when we get to the top of the loop the first time.

b) What are the known facts at P2, when we exit the loop?

c) Prove that the postcondition holds. Use either forward or backward reasoning (your choice) on the
line of code after the loop and then check that the resulting implication holds.

Remember that L.digit is called “d” in the math.

d) What are the known facts at P1, when we enter the loop body?

e) Prove that the invariant is preserved by the body of the loop. Use either forward or backward
reasoning (your choice) to reduce the body to an implication and then check that it holds.

Remember that L.next is called “R” in the math.
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Task 3 – Loop Dreams [11 pts]

In this problem, we will prove the correctness one version of the code for log2 produced by AI in
Homework 1. Here is the code produced by Cursor’s chat agent:

ttn ě 1 uu

int k = 0;

int m = 1;

tt Inv: m “ 2k and m ă 2n uu

while (m < n) {
m = 2 * m;

k = k + 1;

}
tt 2k´1 ă n and n ď 2k uu

The postcondition comes from the specification, specifically the @return tag, which said that the value
of k returned should satisfy these two inequalities.

The loop invariant was not given in the specification, nor was it provided by the AI. I have filled it
in for you to make it possible to complete the proof. (More on this later. . . )

a) Prove that the invariant is true when we get to the top of the loop the first time.

b) Prove that, when we exit the loop, the postcondition holds.

c) Prove that the invariant is preserved by the body of the loop. Use either forward or backward
reasoning (your choice) to reduce the body to an implication and then check that it holds.

d) Would you have guessed that was the loop invariant just by looking at the code?

If the author of the code (AI, in this case) had proven the code correct, do you think they should
have included the loop invariant in the comments or is it fine for them to leave it out and let you
figure it out for yourself?
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Task 4 – Extra Credit: Sum-thing Borrowed, Sum-thing Blue [16 pts]

The function mult : pZ, Listq Ñ List multiplies each element in a list of integers by a given multiplier:

multpx, nilq :“ nil

multpx,m :: Lq :“ x ¨ m :: multpx, Lq

Similar to the Digits data type in Task 2, we represent our IntList as this Java class:

public class IntList {

public int hd;

public IntList tl;

}

The following two claim to be the sum of an IntList whose elements were multiplied by a factor of 3:

A.
ttL “ L0 uu

int z = 0;

int x = 3;

tt Inv: sum(multpx, L0qq “ z ` sum(multpx, Lqq uu

while (L.tl != null) {
ttP1 : uu

ttQ1 : uu

z = z + L.hd * x;

ttQ0 : uu

L = L.tl;

}
tt z “ sum(multpx, Lqq uu

B.
ttL “ L0 uu

int d = 0;

int v = 3;

tt Inv: sumpL0q “ d ` sumpLq uu

while (L.tl != null) {
ttP1 : uu

ttQ1 : uu

d = d + L.hd;

ttQ0 : uu

L = L.tl;

}
d = d * v

tt d “ v ¨ sumpLq uu
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a) Fill in the remaining assertions for each of the code blocks. Determine what must be true at the
top of the loop during each iteration to derive P1’s, and use backward reasoning to derive Q0 and
Q1’s. (Hint: If you’re having trouble finding a starting point for backward reasoning, try to first
figure what must be true at the bottom of the loop for each iteration?)

b) The difference in the loop implementations is the order of multiplying and summing of the elements.
The first multiplies the elements first and then sums, while the bottom sums and then multiplies.
We claim that these are equivalent, but need to prove such a claim first.
Prove that sumpmultpx, Lqq “ x ¨ sumpLq by induction on List L.
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