CSE 331

Reasoning About Straight-Line Code

Katherine Murphy

Inductive Data Types

- Previous saw records, tuples, and unions
- very useful but limited
can only create types that are "small" in some sense
- missing one more way of defining types
arguably the most important
- One critical element is missing: recursion

Java classes can have fields of same type, but records cannot

- Inductive data types are defined recursively
- combine union with recursion

Inductive Data Types

- Describe a set by ways of creating its elements
- each is a "constructor"

$$
\text { type } \mathrm{T}:=\mathrm{C}(\mathrm{x}: \mathbb{Z}) \mid \mathrm{D}(\mathrm{x}: \mathbb{Z}, \mathrm{y}: \mathrm{T})
$$

- second constructor is recursive
- can have any number of arguments (even none) will leave off the parentheses when there are none
- Examples of elements

```
C(1)
D(2, C(1))
D(3, D(2,C(1)))
```


Inductive Data Types

- Each element is a description of how it was made

```
C(1)
D(2, C(1))
D(3, D(2,C(1)))
```

- Equal when they were made exactly the same way
- $\mathrm{C}(1) \neq \mathrm{C}(2)$
- $\mathrm{D}(2, \mathrm{C}(1)) \neq \mathrm{D}(3, \mathrm{C}(1))$
- $\mathrm{D}(2, \mathrm{C}(1)) \neq \mathrm{D}(2, \mathrm{C}(2))$
$-\mathrm{D}(1, \mathrm{D}(2, \mathrm{C}(3)))=\mathrm{D}(1, \mathrm{D}(2, \mathrm{C}(3)))$

Natural Numbers

$$
\text { type } \mathbb{N}:=\text { zero } \mid \operatorname{succ}(\mathrm{n}: \mathbb{N})
$$

- Inductive definition of the natural numbers

```
zero
0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3
```

The most basic set we have is defined inductively!

Even Natural Numbers

$$
\text { type } \mathbb{E}:=\text { zero } \mid \text { two-more }(\mathrm{n}: \mathbb{E})
$$

- Inductive definition of the even natural numbers

```
zero
0
two-more(zero) 2
two-more(two-more(zero)) 4
two-more(two-more(two-more(zero))) 66
```


Lists

```
type List := nil | cons(x:\mathbb{Z,L}:List)
```

- Inductive definition of lists of integers

```
nil
cons(3, nil)
cons(2, cons(3, nil))
cons(1, cons(2, cons(3, nil)))
\approx[]
\approx[3]
\approx[2,3]
\approx [1,2,3]
```


"Lists are the original data structure for functional programming, just as arrays are the original data structure of imperative programming"

Ravi Sethi

Inductive Data Types in TypeScript

- TypeScript does not natively support inductive types
- some "functional" languages do (e.g., OCaml and ML)
- We must think of a way to cobble them together...
- our answer is a design pattern

Design Patterns

- Introduced in the book of that name
- written by the "Gang of Four"

Gamma, Helm, Johnson, Vlissides

- worked in C++ and SmallTalk
- Found that they independently developed many of the same solutions to recurring problems
- wrote a book about them
- Many are problems with 00 languages
- authors worked in C++ and SmallTalk
- some things are not easy to do in those languages

Type Narrowing with Records

- Use a literal field to distinguish records types
- require the field to have one specific value
- called a "tag" field
cleanest way to make unions of records

```
type T1 = {kind: "T1", a: bigint, b: number};
type T2 = {kind: "T2" a: bigint, b: string};
const x: T1 | T2 = ...;
if (x.kind === "T1") { // legal for either type
    console.log(x.b); // must be T1... x.b is a number
} else {
    console.log(x.b); // must be T2... x.b is a string
```

\}

Inductive Data Type Design Pattern

$$
\text { type } T:=C(x: \mathbb{Z}) \mid D\left(x: \mathbb{S}^{*}, \mathrm{t}: \mathrm{T}\right)
$$

- Implement in TypeScript as

```
type T = {kind: "C", x: number}
    | {kind: "D", x: string, t: T};
```


Inductive Data Type Design Pattern

$$
\text { type } \mathrm{T}:=\mathrm{A}|\mathrm{~B}| \mathrm{C}(\mathrm{x}: \mathbb{Z}) \mid \mathrm{D}\left(\mathrm{x}: \mathbb{S}^{*}, \mathrm{t}: \mathrm{T}\right)
$$

- Implement in TypeScript as

```
type T = {kind: "A"}
    | {kind: "B"}
    | {kind: "C", x: bigint}
    | {kind: "D", x: string, t: T};
```


Inductive Data Types in TypeScript

$$
\text { type List }:=\text { nil } \mid \operatorname{cons}(\mathrm{x}: \mathbb{Z}, \mathrm{L}: \text { List })
$$

- Implemented in TypeScript as

```
type List = {kind: "nil"}
    | {kind: "cons", hd: bigint, tl: List};
```

- fields should also be "readonly"

How to check if a value mylist is nil?
if (mylist.kind === "nil") \{

Inductive Data Types in TypeScript

- Make this look more like math notation...

```
type List = {kind: "nil"}
    | {kind: "cons", hd: bigint, tl: List};
const nil: List = {kind: "nil"};
const cons = (hd: bigint, tl: List): List => {
    return {kind: "cons", hd: hd, tl: tl};
}
```

- use only these two functions to create Lists do not create the records directly
- note that we only have one instance of nil
this is called a "singleton" (a design pattern)

Inductive Data Types in TypeScript

- Make this look more like math notation...

```
const nil: List = {kind: "nil"};
const cons = (hd: bigint, tl: List): List => { .. };
```

- Can now write code like this:

```
const L: List = cons(1, cons(2, nil));
if (L === nil) {
    return L;
} else { and it doesn't typecheck
    return cons(L.hd, R); // head of L followed by R
}
```


Inductive Data Types in TypeScript

- Make this look more like math notation...

```
const nil: List = {kind: "nil"};
const cons = (hd: bigint, tl: List): List => { .. };
```

- Still not perfect:
- JS "===" (references to same object) does not match "="

```
cons(1, cons(2, nil)) === cons(1, cons(2, nil)) // false!
```

- need to define an equal function for this

Inductive Data Types in TypeScript

- Objects are equal if they were built the same way

```
type List = {kind: "nil"}
    | {kind: "cons", hd: bigint, tl: List};
const equal = (L: List, R: List): boolean => {
    if (L.kind === "nil") {
        return R === nil;
    } else {
        if (R.kind === "nil") {
            return false;
        } else {
        return L.hd === R.hd && equal(L.tl, R.tl);
        }
    }
};
```


Functions

Code Without Mutation

- Saw all types of code without mutation:
- straight-line code
- conditionals
- recursion
- This is all that there is
- Saw TypeScript syntax for these already...

Code Without Mutation

Example function with all three types

```
// n must be a non-negative integer
const f = (n: bigint) : bigint => {
    if (n === 0n) {
        return 1n;
    } else {
        return 2n * f(n - 1n);
    }
};
```

What does this compute? $\mathbf{2 n}^{\text {n }}$

Recall: Natural Numbers

$$
\text { type } \mathbb{N}:=\text { zero } \mid \operatorname{succ}(\text { prev: } \mathbb{N})
$$

- Inductive definition of the natural numbers

```
zero
0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3
```


Recall: Natural Numbers

$$
\text { type } \mathbb{N}:=\text { zero } \mid \operatorname{succ}(\text { prev: } \mathbb{N})
$$

- Potential definition in TypeScript

```
type Nat = {kind: "zero"}
    | {kind: "succ", prev: Nat};
const zero: Nat = { kind: "zero" };
const succ = (prev: Nat): Nat => {
    return {kind: "succ", prev: prev};
};
```


Induction on Natural Numbers

Could use a type that only allows natural numbers:

```
const f = (n: Nat): bigint => {
    if (n.kind === "zero") {
        return 1n;
    } else {
        return 2n * f(n.prev);
    }
```

 n.prev represents "n-1"
 Cleaner definition of the function (though inefficient)

Structural Recursion

- Inductive types: build new values from existing ones
- only zero exists initially
- build up 5 from 4 (which is built from 3 etc.)

4 is the argument to the constructor of $5=\operatorname{succ}(4)$

- Structural recursion: recurse on smaller parts
- call on n recurses on n.prev
n.prev is the argument to the constructor (succ) used to create n
- guarantees no infinite loops!
limit to structural recursion whenever possible
- We will try to restrict ourselves to structural recursion
- for both math and TypeScript

Defining Functions in Math

- Saw math notation for defining functions, e.g.:

$$
\text { func } f(n):=2 n+1
$$

- We need recursion to define interesting functions
- we will primarily use structural recursion
- Inductive types fit esp. well with pattern matching
- every object is created using some constructor
- match based on which constructor was used (last)

Length of a List

$$
\text { type List }:=\text { nil } \mid \text { cons(hd: } \mathbb{Z} \text {, tl: List) }
$$

- Mathematical definition of length

func len(nil)	$:=0$	
$\operatorname{len}(\operatorname{cons}(x, S))$	$:=1+\operatorname{len}(S)$	for any $x \in \mathbb{Z}$
		and any $S \in$ List

- any list is either nil or cons(x, L) for some x and L
- cases are exclusive and exhaustive

Length of a List

- Mathematical definition of length

func len(nil)	$:=0$	
$\operatorname{len}(\operatorname{cons}(x, S))$	$:=1+\operatorname{len}(S)$	for any $x \in \mathbb{Z}$
		and any $L \in$ List

- Translation to TypeScript

```
const len = (L: List): bigint => {
    if (L.kind === "nil") {
        return 0n;
    } else {
        return ln + len(L.tl);
    }
};
```


Concatenating Two Lists

- Mathematical definition of concat(L, R)

func concat(nil, $R)$	$:=\mathrm{R}$	for any $\mathrm{R} \in$ List
$\operatorname{concat}(\operatorname{cons}(\mathrm{x}, \mathrm{S}), \mathrm{R})$	$:=\operatorname{cons}(\mathrm{x}, \operatorname{concat}(\mathrm{S}, \mathrm{R}))$	for any $\mathrm{x} \in \mathbb{Z}$ and
		any $\mathrm{S}, \mathrm{R} \in$ List

- concat(L, R) defined by pattern matching on L (not R)

Concatenating Two Lists

- Mathematical definition of concat(L, R)

func concat(nil, $R)$	$:=\mathrm{R}$	for any $\mathrm{R} \in$ List
$\operatorname{concat}(\operatorname{cons}(\mathrm{x}, \mathrm{S}), \mathrm{R})$	$:=\operatorname{cons}(\mathrm{x}, \operatorname{concat}(\mathrm{S}, \mathrm{R}))$	for any $\mathrm{x} \in \mathbb{Z}$ and
		any $\mathrm{S}, \mathrm{R} \in$ List

- Translation to TypeScript

```
const concat = (L: List, R: List): List => {
    if (L.kind === "nil") {
        return R;
        straight from the spec
    } else {
        return cons(L.hd, concat(L.tl, R));
    }
};
```


Example

- See ex3 on the course website
- Simple use of Nat in a webapp

Formalizing Specifications

Correctness Levels

Level	Description	Testing	Tools	Reasoning
0	small \# of inputs	exhaustive		
1	straight from spec	heuristics	type checking	code reviews
2	no mutation	"	libraries	calculation induction
$\mathbf{3}$	local variable mutation	"	"	Floyd logic
4	array mutation	"	"	for-any facts
5	heap state mutation	"		"

[^0]
Formalizing a Specification

- Sometimes the instructions are written in English
- English is often imprecise or ambiguous
- First step is to "formalize" the specification:
- translate it into math with a precise meaning
- How do we tell if the specification is wrong?
- specifications can contain bugs
- we can only test our definition on some examples
(formal) reasoning can only be used after we have a formal spec
- Usually best to start by looking at some examples

Definition of Sum of Values in a List

- Sum of a List: "add up all the values in the list"
- Look at some examples...

L	sum(L)
nil	0
cons(3, nil)	3
$\operatorname{cons}(2, \operatorname{cons}(3$, nil))	$2+3$
$\operatorname{cons}(1, \operatorname{cons}(2, \operatorname{cons}(3$, nil) $))$	$1+2+3$
\ldots	\ldots

Definition of Sum of Values in a List

- Look at some examples...

L	$\operatorname{sum}(\mathrm{L})$
nil	0
$\operatorname{cons}(3$, nil $)$	3
$\operatorname{cons}(2, \operatorname{cons}(3$, nil) $)$	$2+3$
$\operatorname{cons}(1, \operatorname{cons}(2, \operatorname{cons}(3$, nil)))	$1+2+3$

- Mathematical definition

func sum(nil)	$:=$
$\operatorname{sum}(\operatorname{cons}(x, S))$	$:=$

for any $x \in \mathbb{Z}$ and any $S \in$ List

Sum of Values in a List

- Mathematical definition of sum

func sum(nil)	$:=0$	
$\operatorname{sum}(\operatorname{cons}(x, S))$	$:=x+\operatorname{sum}(S)$	for any $x \in \mathbb{Z}$
		and any $S \in$ List

- Translation to TypeScript

```
const sum = (L: List): bigint => {
    if (L.kind === "nil") {
        return 0n;
    } else {
        return L.hd + sum(L.tl);
    }
```


Definition of Reversal of a List

- Look at some examples...

```
L
nil
cons(3, nil)
cons(2, cons(3, nil))
cons(1, cons(2, cons(3, nil)))
```

```
rev(L)
```

rev(L)
nil
nil
cons(3, nil)
cons(3, nil)
cons(3, cons(2, nil))
cons(3, cons(2, nil))
cons(3,\operatorname{cons(2, cons(1, nil)))}

```
cons(3,\operatorname{cons(2, cons(1, nil)))}
```

- Draw a picture?

Reversing A Lists

- Draw a picture?
reverse this too

- Mathematical definition of rev

```
func rev(nil)
    rev(cons(x, S)) :=
```

for any $x \in \mathbb{Z}$ and any $S \in$ List

Reversing A Lists

- Mathematical definition of rev

func $\operatorname{rev}($ nil $)$	$:=$ nil	
$\operatorname{rev}(\operatorname{cons}(x, S))$	$:=\operatorname{concat}(\operatorname{rev}(S), \operatorname{cons}(x$, nil $))$	for any $x \in \mathbb{Z}$ and
		any $S \in$ List

- Other definitions are possible, but this is simplest
- No help from reasoning tools until later
- only have testing and thinking about what the English means
- Always make definitions as simple as possible

Reasoning

Review: Software Development Process

Given: a problem description (in English)

Reasoning

- "Thinking through" what the code does on all inputs
- neither testing nor type checking can do this
- Required in principle and in practice
- a professional responsibility to know what your code does
- in practice, "reasoning is not optional: either reason up front or debug and then reason"
- Can be done formally or informally
- most professionals reason informally requires years of practice
- we will teach formal reasoning
steppingstone to informal reasoning and needed for the hardest problems

Reasoning

- In an intro class, you might be asked:
what does this code do on this input?
- In this class, we are often interested in:
what does this code do on all inputs?
- This is a very different question!

Correctness Levels

Level	Description	Testing	Tools	Reasoning
0	small \# of inputs	exhaustive		
$\begin{gathered} 1 \\ \text { HW Quilt } \end{gathered}$	straight from spec	heuristics	type checking	code reviews
2 HW Quilt/Cipher	no mutation	"	libraries	calculation induction
3 HW Weave	local variable mutation	"	"	Floyd logic
4 HW Chatbot	array mutation	"	"	for-any facts
5 HW Squares	heap state mutation	"	"	rep invariants

Facts

- Basic inputs to reasoning are "facts"
- things we know to be true about the variables
- typically, "=" or " \leq "

```
// n must be a natural number
const f = (n: bigint): bigint => {
    const m = 2n * n;
    return (m + 1n) * (m - 1n);
};
find facts by reading along path
    from top to return statement
```

- At the return statement, we know these facts:
$-\mathrm{n} \in \mathbb{N}$
(or $n \in \mathbb{Z}$ and $n \geq 0$)
$-\mathrm{m}=2 \mathrm{n}$

Facts

- Basic inputs to reasoning are "facts"
- things we know to be true about the variables
- typically, "=" or " \leq "

```
// n must be a natural number
const f = (n: bigint): bigint => {
    const m = 2n * n;
    return (m + 1n) * (m - 1n);
};
```

- No need to include the fact that n is an integer ($\mathrm{n} \in \mathbb{Z}$)
- that is true, but the type checker takes care of that
- no need to repeat reasoning done by the type checker

Implications

- We can use the facts we know to prove more facts
- if we can prove R using facts P and Q, we say that R "follows from" or "is implied by" P and Q
- proving this fact is proving an "implication"
- Proving implications is necessary for checking correctness...

Checking Correctness

- Specifications include two kinds of facts
- promised facts about the inputs (P and Q)
- required facts about the outputs (R)
- Checking correctness is just proving implications
- proving facts about the return values
- Two ways reasoning could be required:
- declarative spec has facts that must hold for the return value
- different imperative spec: must check expressions are "="

Implications

- We can use the facts we know to prove more facts
- if we can prove R using facts P and Q, we say that R "follows from" or "is implied by" P and Q
- Proving implications is the core step of reasoning
- other techniques output implications for us to prove
- The techniques we will learn are
- proof by calculation
- proof by cases
- structural induction \} gives us two implications, each usually proven by calculation

Proof by Calculation

- Proves an implication
- fact to be shown is an equation or inequality
- Uses known facts and definitions
- latter includes, e.g., the fact that len(nil) $=0$

Example Proof by Calculation

- Given $\mathrm{x}=\mathrm{y}$ and $\mathrm{z} \leq 10$, prove that $\mathrm{x}+\mathrm{z} \leq \mathrm{y}+10$
- show the third fact follows from the first two
- Start from the left side of the inequality to be proved

All together, this tells us that $x+z \leq y+10$

Example Proof by Calculation

- Given $\mathrm{x}=\mathrm{y}$ and $\mathrm{z} \leq 10$, prove that $\mathrm{x}+\mathrm{z} \leq \mathrm{y}+10$
- show the third fact follows from the first two
- Start from the left side of the inequality to be proved

$$
\begin{aligned}
x+z & =y+z & & \text { since } x=y \\
& \leq y+10 & & \text { since } z \leq 10
\end{aligned}
$$

- easier to read when split across lines
- "calculation block", includes explanations in right column proof by calculation means using a calculation block
- "=" or " \leq " relates that line to the previous line

Calculation Blocks

- Chain of "=" shows first = last

a	$=b$	since $a=b$
	$=c$	since $b=c$
	$=d$	since $c=d$

- proves that $\mathrm{a}=\mathrm{d}$
- all 4 of these are the same number

Calculation Blocks

- Chain of "=" and " \leq " shows first \leq last

$$
\begin{aligned}
x+z & =y+z & & \text { since } x=y \\
& \leq y+10 & & \text { since } z \leq 10 \\
& =y+3+7 & & \\
& \leq w+7 & & \text { since } y+3 \leq w
\end{aligned}
$$

- each number is equal or strictly larger that previous
- analogous for " \geq "

Using Calculation to Prove Correctness

```
// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: bigint, y, bigint) : bigint => {
    return x + y;
};
```

- Known facts " $x \geq 1$ " and " $y \geq 1$ "
- Correct if the return value is a positive integer

$$
\begin{array}{rlr}
x+y & \geq x+1 & \text { since } y \geq 1 \\
& \geq 1+1 & \text { since } x \geq 1 \\
& =2 & \\
& \geq 1 &
\end{array}
$$

- calculation shows that $x+y \geq 1$

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
    return x + y;
};
```

- Known facts " $x \geq 9$ " and " $y \geq-8$ "
- Correct if the return value is a positive integer

$$
x+y
$$

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
    return x + y;
};
```

- Known facts " $x \geq 9$ " and " $y \geq-8$ "
- Correct if the return value is a positive integer

$$
\begin{array}{rlrl}
x+y & \geq x+-8 & & \text { since } y \geq-8 \\
& \geq 9-8 & & \text { since } x \geq 9 \\
& =1 &
\end{array}
$$

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: bigint, y, bigint): bigint => {
    return x + y;
};
```

- Known facts " $x \geq 4$ " and " $y \geq 5$ "
- Correct if the return value is 10 or larger

$$
x+y
$$

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: bigint, y, bigint) : bigint => {
    return x + y;
};
```

- Known facts " $x \geq 4$ " and " $y \geq 5$ "
- Correct if the return value is 10 or larger

$$
\begin{array}{rlr}
x+y & \geq x+5 & \text { since } y \geq 5 \\
& \geq 4+5 & \\
& =9 &
\end{array}
$$

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint) : bigint => {
    return x + y;
};
```

- Known facts " $x>8$ " and " $y>-9$ "
- Correct if the return value is a positive integer

$$
\begin{array}{llrl}
x+y & >x+-9 & & \text { since } y>-9 \\
& >8-9 & & \text { since } x>8 \\
& =-1 &
\end{array}
$$

Using Definitions in Calculations

- Most useful with function calls
- cite the definition of the function to get the return value
- For example:

$$
\begin{array}{lll}
\text { func sum(nil) } & :=0 & \\
\operatorname{sum}(\operatorname{cons}(x, L)) & :=x+\operatorname{sum}(L) & \text { for any } x \in \mathbb{Z} \\
& & \text { and any } L \in \text { List }
\end{array}
$$

- Can cite facts such as
$-\operatorname{sum}($ nil $)=0$
$-\operatorname{sum}(\operatorname{cons}(a, \operatorname{cons}(b, n i l)))=a+\operatorname{sum}(\operatorname{cons}(b, n i l))$

Using Definitions in Calculations

$$
\begin{array}{lll}
\text { func sum(nil) } & :=0 & \\
\operatorname{sum}(\operatorname{cons}(x, L)) & :=x+\operatorname{sum}(L) & \text { for any } x \in \mathbb{Z} \\
& & \text { and any } L \in \text { List }
\end{array}
$$

- Know "a ≥ 0 ", "b ≥ 0 ", and "L $=$ cons(a, cons(b, nil))"
- Prove the "sum (L) " is non-negative

```
sum(L)
```


Using Definitions in Calculations

func sum(nil)	$:=0$	
$\operatorname{sum}(\operatorname{cons}(x, L))$	$:=x+\operatorname{sum}(L)$	for any $x \in \mathbb{Z}$
		and any $L \in$ List

- Know "a ≥ 0 ", "b ≥ 0 ", and " $L=\operatorname{cons(a,~cons(b,~nil))"~}$
- Prove the "sum(L)" is non-negative

$$
\begin{aligned}
\operatorname{sum}(L) & =\operatorname{sum}(\operatorname{cons}(a, \operatorname{cons}(b, \text { nil })) & & \text { since } L=c o \\
& =a+\operatorname{sum}(\operatorname{cons}(b, \text { nil) }) & & \text { def of sum } \\
& =a+b+\operatorname{sum}(\text { nil }) & & \text { def of sum } \\
& =a+b & & \text { def of sum } \\
& \geq 0+b & & \text { since } a \geq 0 \\
& \geq 0 & & \text { since } b \geq 0
\end{aligned}
$$

Proof by Calculation

What We Get from Reasoning

- If the proof works, the code is correct
- why reasoning is useful for finding bugs
- If the code is incorrect, the proof will not work
- If the proof does not work, the code is probably wrong could potentially be an issue with the proof (e.g., two "<"s) but that is a rare occurrence

Finding Facts at a Return Statement

- Consider this code

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
    const L: List = cons(a, cons(b, nil));
    if (a >= 0n && b >= 0n)
    return sum(L);
```

find facts by reading along path
from top to return statement

- Known facts include "a ≥ 0 ", " $b \geq 0$ ", and "L $=\operatorname{cons}(. .$.$) "$

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint) : bigint => {
    if (y < 0n) {
        return x + y;
        } else {
        return x - 1n;
    }
};
```

- Known fact in then (top) branch: " $\mathrm{y} \leq-1$ "
$x+y$

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
        if (y < 0n) {
        return x + y;
        } else {
        return x - 1n;
    }
};
```

- Known fact in then (top) branch: " $\mathrm{y} \leq-1$ "

$$
\begin{array}{rlr}
x+y & \leq x+-1 & \\
& <x+0 & \text { since } y \leq-1 \\
& =x & \text { since }-1<0
\end{array}
$$

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint) : bigint => {
    if (y < 0n) {
            return x + y;
    } else {
            return x - 1n;
    }
};
```

- Known fact in else (bottom) branch: " $y \geq 0$ "
x-1

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
    if (y < 0n) {
        return x + y;
        } else {
        return x - 1n;
    }
};
```

- Known fact in else (bottom) branch: " $y \geq 0$ "

$$
\begin{array}{rlr}
x-1 & <x+0 & \text { since }-1<0 \\
& =x &
\end{array}
$$

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint) : bigint => {
    if (y < 0n) {
        return x + y;
    } else {
        return x - 1n;
    }
};
```

- Conditionals give us extra known facts
- get known facts from

1. specification
2. conditionals
3. constant declarations

Proving Correctness with Multiple Claims

- Need to check the claim from the spec at each return
- If spec claims multiple facts, then we must prove that each of them holds

```
// Inputs x and y are integers with x < y - 1
// Returns a number less than y and greater than x.
const f = (x: bigint, y, bigint): bigint => { .. };
```

- multiple known facts: $\mathrm{x}: \mathbb{Z}, \mathrm{y}: \mathbb{Z}$, and $\mathrm{x}<\mathrm{y}-1$
- multiple claims to prove: $x<r$ and $r<y$
where " r " is the return value
- requires two calculation blocks

Recall: Max With an Imperative Specification

```
// Returns a if a >= b and b if a < b
const max = (a: bigint, b, bigint) : bigint => {
    if (a >= b) {
        return a;
    } else {
        return b;
    }
};
```


Example Correctness with Conditionals

```
// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: bigint, b, bigint) : bigint => {
    if (a >= b) {
        return a;
    } else {
        return b;
    }
};
```

- Three different facts to prove at each return
- Two known facts in each branch (return value is "r"):
- then branch: $\quad \mathrm{a} \geq \mathrm{b}$ and $\mathrm{r}=\mathrm{a}$
- else branch: $\quad \mathrm{a}<\mathrm{b}$ and $\mathrm{r}=\mathrm{b}$

Example Correctness with Conditionals

```
// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: bigint, b, bigint) : bigint => {
    if (a >= b) {
        return a; Know a }\geq\textrm{b}\mathrm{ and }\textrm{r}=\textrm{a
    } else {
        return b;
    }
};
```

- Correctness of return in "then" branch:
$-r=a$ holds so "r = a or $r=b "$ holds,
$-r=a$ holds so " $r \geq a$ " holds, and

$$
\begin{array}{rlr}
\mathrm{r} & =\mathrm{a} & \\
\geq \mathrm{b} & \text { since } \mathrm{a} \geq \mathrm{b}
\end{array}
$$

Example Correctness with Conditionals

```
// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: bigint, b, bigint) : bigint => {
    if (a >= b) {
        return a;
    } else {
        return b; Know a < b and r=b
    }
};
```

- Correctness of return in "else" branch:
$-r=b$ holds so " $r=a$ or $r=b$ " holds,
$-r=b$ holds so " $r \geq b$ " holds, and
$-r \geq a$ holds since we have $r>a$:
$\mathrm{r}=\mathrm{b}$
$>\mathrm{a} \quad$ since $\mathrm{a}<\mathrm{b}$

Sum of a List

```
const f = (a: bigint, b: bigint): bigint => {
    const L: List = cons(a, cons(b, nil));
    const s: bigint = sum(L); // = a + b
```

- Can prove the claim in the comments by calculation

```
sum(L)
```

func sum(nil)	$:=0$
$\operatorname{sum}(\operatorname{cons}(x, L))$	$:=x+\operatorname{sum}(L) \quad$ for any $x \in \mathbb{Z}$ and any $L \in$ List

Sum of a List

```
const f = (a: bigint, b: bigint): bigint => {
        const L: List = cons(a, cons(b, nil));
        const s: bigint = sum(L); // = a + b
};
```

- Can prove the claim in the comments by calculation

$$
\begin{aligned}
\operatorname{sum}(\mathrm{L}) & =\operatorname{sum}(\operatorname{cons}(a, \operatorname{cons}(b, \text { nil }))) \\
& =a+\operatorname{sum}(\operatorname{cons}(b, \text { nil })) \\
& =a+b+\operatorname{sum}(n i l) \\
& =a+b
\end{aligned}
$$

$$
\text { since } L=\ldots
$$

def of sum
def of sum
def of sum

func sum(nil)	$:=0$
$\operatorname{sum}(\operatorname{cons}(x, L))$	$:=x+\operatorname{sum}(L) \quad$ for any $x \in \mathbb{Z}$ and any $L \in$ List

Sum of a List

```
const f = (a: bigint, b: bigint): bigint => {
    const L: List = cons(a, cons(b, nil));
    const s: bigint = sum(L); // = a + b
}
```

- Can prove the claim in the comments by calculation

$$
\operatorname{sum}(\operatorname{cons}(a, \operatorname{cons}(b, n i l)))=\ldots=a+b
$$

- For which values of a and b does this hold?
holds for any $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$

What We Have Proven

- We proved by calculation that

$$
\operatorname{sum}(\operatorname{cons}(a, \operatorname{cons}(b, \operatorname{nil})))=a+b
$$

- This holds for any $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$
- We have proven infinitely many facts
$-\operatorname{sum}(\operatorname{cons}(3, \operatorname{cons}(5$, nil) $))=8$
$-\operatorname{sum}(\operatorname{cons}(-5, \operatorname{cons}(2$, nil $)))=-3$
- replacing all the 'a's and 'b's with those numbers gives a calculation proving the " $=$ " for those numbers

What We Have Proven

- We proved by calculation that

$$
\operatorname{sum}(\operatorname{cons}(a, \operatorname{cons}(b, \operatorname{nil})))=a+b
$$

- We can use this fact for any a and b we choose
- our proof is a "recipe" that can be used for any a and b
- just as a function can be used with any argument values, our proof can be used with any values for the "any" variables (any values satisfying the specification)
- use "for any ..." to make clear which things are variables
- This is called a "direct proof" of the "for any" claim

Binary Trees

Binary Trees

```
type Tree := empty| node(x:\mathbb{Z},\textrm{L}:Tree, R:Tree)
```

- Inductive definition of binary trees of integers
node(1, node(2, empty, empty), node(3, empty, node(4, empty, empty))))

Height of a Tree

$$
\text { type Tree }:=\text { empty } \mid \text { node(x: } \mathbb{Z}, \text { L: Tree, R: Tree) }
$$

- Height of a tree: "maximum steps to get to a leaf"

Height of a Tree

```
type Tree := empty| node(x: \mathbb{Z, L: Tree, R: Tree)}
```

- Mathematical definition of height

for any $x \in \mathbb{Z}$ and any $L, R \in$ Tree

Height of a Tree

```
type Tree := empty| node(x: \mathbb{Z, L: Tree, R: Tree)}
```

- Mathematical definition of height

Using Definitions in Calculations

$$
\begin{array}{ll}
\text { func height(empty) } & :=-1 \\
\begin{aligned}
\text { height(node }(x, L, R)) & := \\
& \text { for any } x \in \mathbb{Z} \text { and any } L, R \in \text { Tree }
\end{aligned}
\end{array}
$$

- Suppose "T = node(1, empty, node(2, empty, empty))"
- Prove that height $(T)=1$
height(T)

Using Definitions in Calculations

$$
\begin{array}{ll}
\text { func height(empty) } & :=-1 \\
\text { height(node }(x, L, R)):=1+\max (\text { height(L), height(R)) } \\
& \quad \text { for any } x \in \mathbb{Z} \text { and any } L, R \in \text { Tree }
\end{array}
$$

- Suppose "T = node(1, empty, node(2, empty, empty))"
- Prove that height $(T)=1$

```
height(T) = height(node(1, empty, node(2, empty, empty)) since T = ...
    =1 + max(height(empty), height(node(2, empty, empty))) def of height
    = 1 + max(-1, height(node(2, empty, empty))) def of height
    = 1 + max(-1,1+ max(height(empty), height(empty))) def of height
    =1+\operatorname{max}(-1,1+\operatorname{max}(-1, height(empty))) def of height
    =1+\operatorname{max}(-1,1+\operatorname{max}(-1,-1)) def of height
    =1+\operatorname{max}(-1,1+-1) def of max
    =1+\operatorname{max}(-1,0)
    =1+0 def of max
    =1
```


Trees

- Trees are inductive types with a constructor that has 2+ recursive arguments
- These come up all the time...
- no constructors with recursive arguments = "generalized enums"
- constructor with 1 recursive arguments = "generalized lists"
- constructor with 2+ recursive arguments = "generalized trees"
- Some prominent examples of trees:
- HTML: used to describe UI
- JSON: used to describe just about any data

Recall: HTML

- Nesting structure describes the tree
<div>
<p id="firstParagraph"> Some Text </p>

<div>
<p>Hello</p>

$$
</ \text { div> }
$$

</div>

Custom Tags for Modularity

- The React library lets you write "custom tags"
- functions that return HTML

```
return (
    <div>
        <p>Hi, Alice!</p>
        <p>Hi, Bob!</p>
    </div>);
```

can become

```
return (
    <div>
    <SayHi name={"Alice"}/>
    <SayHi name={"Bob" } />
    </div>);
```


Custom Tags for Modularity

- The React library lets you write "custom tags"

```
return (
    <div>
    <SayHi name={"Alice"} />
    <SayHi name={"Bob" } />
    </div>);
```

makes two calls to this function

```
const SayHi = (props: {name: string}): JSX.Element => {
    return <p>Hi, {props.name}</p>;
};
```

- attributes are passed as a record argument ("props")

Custom Tags for Modularity

```
return
    <div>
    <SayHi name={"Alice"} lang={"es"}/>
    <SayHi name={"Bob" } />
</div>);
```

makes two calls to this function

```
type SayHiProps = {name: string, lang?: string};
const SayHi = (props: SayHiProps): JSX.Element => {
    if (props.lang === "es")
        return <p>Hola, {props.name}</p>;
    } else {
        return <p>Hi, {props.name}</p>;
    }
};
```


Custom Tags for Modularity

- The React library lets you write "custom tags"
- attributes are passed as a record argument ("props")
- In render, React will paste the parts together:

```
<div>
    <SayHi name={"Alice"} lang={"es"}/>
    <SayHi name={"Bob"}/>
</div>
```

becomes

```
<div>
    <p>Hola, Alice!</p>
    <p>Hi, Bob!</p>
</div>
```


Custom Tags for Modularity

- HTML literal syntax allows any tags

```
return (
    <div>
    <SayHi name={"Alice"} lang={"es"}/>
    <SayHi name={"Bob" } />
</div>);
```

- evaluates to a tree with two nodes with tag name "SayHi"
- this matters when testing (comes up in HW3)
- React's render method is what calls SayHi
- HTML returned is substituted where the "SayHi" tag was

React Render

- React's render pastes strings together

```
const name: string = "Fred";
return <p>Hi, {name}</p>;
```

returns a different tree than

```
return <p>Hi, Fred</p>;
```

- in first tree, "p" tag has one child
- in second tree, "p" tag has two children
- render method concatenates text children into one string
- These differences matter for testing!

React Render

- React's render pastes arrays into child list

```
const L = [<span>Hi</span>, <span>Fred</span>];
return <p>{L}</p>;
```

returns a different tree than

```
return <p><span>Hi</span><span>Fred</span></p>;
```

- in first tree, "p" tag has one child
- in second tree, "p" tag has two children
- render method turns the first into the second
- These differences matter for testing!

[^0]: "straight from spec" requires us to have a formal spec!

