CSE 331

Reasoning About Straight-Line Code
Katherine Murphy

Credits: Profs. Kevin Zatloukal and James Wilcox

Inductive Data Types

* Previous saw records, tuples, and unions

— very useful but limited
can only create types that are “small” in some sense

— missing one more way of defining types
arguably the most important

* One critical element is missing: recursion
Java classes can have fields of same type, but records cannot

* Inductive data types are defined recursively
— combine union with recursion

Inductive Data Types

* Describe a set by ways of creating its elements
— each is a “constructor”

typeT:= C(x:Z) | D(x:Z, y:T)

— second constructor is recursive

— can have any nhumber of arguments (even none)
will leave off the parentheses when there are none

 Examples of elements

C(1)
D(2, C(1)) in math, these are not function calls
D(3,D(2, C(1)))

Inductive Data Types

 Each element is a description of how it was made

C(1)
D(2, C(1))
D(3, D(2, C(1)))

* Equal when they were made exactly the same way

— C(1) #C(2)
— D(2,C(1)) £ D(3, C(1))
— D(2,C(1)) £ D(2, C(2))

— D(1,D(2,C(3))) =D(1,D(2,C(3)))

Natural Numbers

type N := zero | succ(n:N)

 |Inductive definition of the natural numbers

Zero 0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3

The most basic set we have is defined inductively!

Even Natural Numbers

type E := zero | two-more(n: E)

 |Inductive definition of the even natural numbers

Z€ero

-more(zero i
two-more(zero) much better notation

two-more(two-more(zero))

o BN O

two-more(two-more(two-more(zero)))

Lists

type List := nil | cons(x:Z, L: List)

* Inductive definition of lists of integers

nil ~]
cons(3, nil) ~ [3] _
_ array notation
cons(2, cons(3, nil)) ~ (2, 3]
cons(1, cons(2, cons(3, nil))) ~ (1, 2, 3]

“Lists are the original data structure for functional programming,
just as arrays are the original data structure of imperative programming”

Ravi Sethi

we will work with lists in HW Cipher+ and arrays HW Chatbot+

Inductive Data Types in TypeScript

* TypeScript does not natively support inductive types
— some “functional” languages do (e.g., OCaml and ML)

* We must think of a way to cobble them together...
— our answer is a design pattern

Design Patterns

 Introduced in the book of that name
— written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides
— worked in C++ and SmallTalk

acn D mno
Design Patterns
Elements of Regsable
Object-Oriefited Softwara

 Found that they independently developed 2
many of the same solutions to recurring problems
— wrote a book about them

 Many are problems with OO0 languages
— authors worked in C++ and SmaliTalk
— some things are not easy to do in those languages

Type Narrowing with Records

 Use a literal field to distinguish records types
— require the field to have one specific value

— called a “tag’ field
cleanest way to make unions of records

type Tl = {kind: “T1”, a: bigint, b: number};
type T2 = {kind: “T2” a: bigint, b: string};

const x: Tl | T2 = ..;

if (x.kind === “T1”) { // legal for either type
console.log(x.b); // must be Tl. x.b is a number

} else {

console.log(x.b); // must be T2. x.b is a string

Inductive Data Type Designh Pattern

typeT := C(x:Z) |D(x:8%,t:T)
* Implement in TypeScript as

type T = {kind: “C”, x: number}
| {kind: “D”, x: string, t: T};

Inductive Data Type Designh Pattern

typeT := A | B| C(x:Z) |D(x:S8,t:T)

* Implement in TypeScript as

type T = {kind: “A”}
| {kind: “B”}
| {kind: “C”, x: bigint}
| {kind: “D”, x: string, t: T};

Inductive Data Types in TypeScript

type List := nil | cons(x:Z, L: List)

 Implemented in TypeScript as

type List = {kind: “nil”}
| {kind: “cons”, hd: bigint, tl: List};

— fields should also be “readonly”

How to check if a value mylist is nil?
1f (mylist.kind === “nil”) {

Inductive Data Types in TypeScript

e Make this look more like math notation...

type List = {kind: “nil”}
| {kind: “cons”, hd: bigint, tl: List};

const nil: List = {kind: “nil”};

const cons = (hd: bigint, tl: List): List => {
return {kind: ”“cons”, hd: hd, tl: tl};

— use only these two functions to create Lists
do not create the records directly

— note that we only have one instance of nil

this is called a “singleton” (a design pattern)

Inductive Data Types in TypeScript

e Make this look more like math notation...
const nil: List = {kind: “nil”};

const cons = (hd: bigint, tl: List): List => { .. };

e Can now write code like this:

const L: List = cons(l, cons (2, nil));

if someone made their own nil,

if (L === nil) { then this would fail ®
return L;
} else { and it doesn’t typecheck

return cons(L.hd, R); // head of L followed by R

Inductive Data Types in TypeScript

e Make this look more like math notation...
const nil: List = {kind: “nil”};

const cons = (hd: bigint, tl: List): List => { .. };

 Still not perfect:
— JS “===" (references to same object) does not match “="

cons(l, cons (2, nil)) === cons(l, cons(2, nil)) // false!

— need to define an equal function for this

Inductive Data Types in TypeScript

* Objects are equal if they were built the same way

type List = {kind: “nil”}
| {kind: “cons”, hd: bigint, tl: List};

const equal = (L: List, R: List): boolean => {
if (L.kind === “nil”) {
return R === nil;
} else {
if (R.kind === “nil”) {

return false;
} else {
return L.hd === R.hd && equal (L.tl, R.tl);

s

Functions

Code Without Mutation

 Saw all types of code without mutation:
— straight-line code

— conditionals
— recursion

 This is all that there is

 Saw TypeScript syntax for these already...

Code Without Mutation

Example function with all three types

// n must be a non-negative integer

const £ = (n: bigint): bigint => {
if (n === On) {
return 1n;
} else {
return 2n * f(n - 1n);

b

What does this compute? 2n

Recall: Natural Numbers

type N := zero | succ(prev: N)

 |Inductive definition of the natural numbers

Zero
succ(zero)
succ(succ(zero))

w N = O

succ(succ(succ(zero)))

Recall: Natural Numbers

type N := zero | succ(prev: N)

* Potential definition in TypeScript

type Nat = {kind: “zero”}

| {kind: “succ”, prev: Nat};

const zero: Nat = { kind: “zero” };

const succ = (prev: Nat): Nat => {

return {kind: "“succ”, prev: prev};

s

Induction on Natural Numbers

Could use a type that only allows natural numbers:

const £ = (n: Nat): bigint => {
if (n.kind === “zero”) {
return 1n;
} else {

return 2n * f (n.prev);
} h.prev represents “n - 1”

b

Cleaner definition of the function (though inefficient)

Structural Recursion

* Inductive types: build new values from existing ones
— only zero exists initially
— build up 5 from 4 (which is built from 3 etc.)

4 is the argument to the constructor of 5 = succ(4)

e Structural recursion: recurse on smaller parts
— call on n recurses on n.prev

n.prev is the argument to the constructor (succ) used to create n

— guarantees no infinite loops!
limit to structural recursion whenever possible

* We will try to restrict ourselves to structural recursion
— for both math and TypeScript

Defining Functions in Math

 Saw math notation for defining functions, e.g.:

funcf(n) := 2n+1 foranyn: N

* We need recursion to define interesting functions
— we will primarily use structural recursion

* Inductive types fit esp. well with pattern matching
— every object is created using some constructor
— match based on which constructor was used (last)

Length of a List

type List := nil | cons(hd: Z, tl: List)

 Mathematical definition of length

func len(nil) =0
len(cons(x, S)) 1 + len(S) for any x € Z
and any S € List

— any list is either nil or cons(x, L) for some x and L
— cases are exclusive and exhaustive

Length of a List

 Mathematical definition of length

func len(nil) =0
len(cons(x,S)) := 1+ len(S) for any x € Z
and any L € List
* Translation to TypeScript
const len = (L: List): bigint => {
if (L.kind === “nil”) {
return On;
} else { straight from the spec

return 1n + len(L.tl);

s

Concatenating Two Lists

* Mathematical definition of concat(L, R)

func concat(nil, R) = R for any R € List

concat(cons(x, S), R) cons(x, concat(S,R)) foranyx € Z and

any S, R € List

— concat(L, R) defined by pattern matching on L (not R)

-
-

Concatenating Two Lists

* Mathematical definition of concat(L, R)

func concat(nil, R) = R for any R € List

cons(x, concat(S,R)) foranyx € Z and
any S, R € List

concat(cons(x, S), R)

* Translation to TypeScript

const concat = (L: List, R: List): List => {
if (L.kind === “nil”) {
return R; straight from the spec
} else {

return cons(L.hd, concat(L.tl, R));

s

Example

e See ex3 on the course website
— Simple use of Nat in a webapp

Formalizing Specifications

Correctness Levels

small # of inputs exhaustive

1 straight from spec heuristics type checking code reviews

2 no mutation “ libraries calculation
induction

3 local variable “ “ Floyd logic

mutation
4 array mutation “ “ for-any facts
5 heap state mutation “ “ rep invariants

“straight from spec” requires us to have a formal spec!

Formalizing a Specification

 Sometimes the instructions are written in English
— English is often imprecise or ambiguous

First step is to “formalize” the specification:
— translate it into math with a precise meaning

How do we tell if the specification is wrong?
— specifications can contain bugs

— we can only test our definition on some examples
(formal) reasoning can only be used after we have a formal spec

Usually best to start by looking at some examples

Definition of Sum of Values in a List

 Sum of a List: “add up all the values in the list”

* Look at some examples...

L sum(L)
nil 0
cons(3, nil) 3
cons(2, cons(3, nil)) 2+3

cons(1, cons(2, cons(3, nil))) 1+2+3

Definition of Sum of Values in a List

* Look at some examples...

L sum(L)
nil 0
cons(3, nil) 3
cons(2, cons(3, nil)) 2+3
cons(1, cons(2, cons(3, nil))) 1+2+3

« Mathematical definition

func sum(nil) =
sum(cons(x, S))

forany x € Z
and any S € List

Sum of Values in a List

e Mathematical definition of sum

func sum(nil) =0

sum(cons(x, S)) X + sum(S) forany x € Z

and any S € List

* Translation to TypeScript

const sum = (L: List): bigint => {
if (L.kind === “nil”) {
return On;
} else {
return L.hd + sum(L.tl);

\ straight from the spec

Definition of Reversal of a List

* Look at some examples...

L rev(L)

nil nil

cons(3, nil) cons(3, nil)

cons(2, cons(3, nil)) cons(3, cons(2, nil))

cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))

 Draw a picture?

reverse this too
1 @

move 1 to end

Reversing A Lists

 Draw a picture? reverse this too
1 @

move 1 to end

e Mathematical definition of rev

func rev(nil)

rev(cons(x,S)) = for any x € Z and
any S € List

Reversing A Lists

Mathematical definition of rev

func rev(nil) := nil

rev(cons(x,S)) := concat(rev(S), cons(x, nil)) forany x € Z and
any S € List

Other definitions are possible, but this is simplest

No help from reasoning tools until later
— only have testing and thinking about what the English means

Always make definitions as simple as possible

Reasoning

Review: Software Development Process

Given: a problem description (in English)

[IdeaGenerationJ [TypeCheckingJ [Reasoning J [Testing J

[Debugging J: [Beta Users J

You get paid for reasoning and debugging!
Everything else can (and will) be automated. [Al Users J

Reasoning

 “Thinking through” what the code does on all inputs
— heither testing nor type checking can do this

* Required in principle and in practice
— a professional responsibility to know what your code does

— in practice, “reasoning is not optional:
either reason up front or debug and then reason”

 Can be done formally or informally

— most professionals reason informally
requires years of practice

— we will teach formal reasoning
steppingstone to informal reasoning and needed for the hardest problems

Reasoning

* |n an intro class, you might be asked:

what does this code do on this input?

* In this class, we are often interested in:

what does this code do on all inputs?

* This is a very different question!

Correctness Levels

small # of inputs exhaustive
1 straight from spec heuristics type checking code reviews
HW Quilt
2 no mutation “ libraries calculation
HW Quilt/Cipher induction

3 local variable “ “ Floyd logic
HW Weave mutation

4 array mutation “ “ for-any facts
HW Chatbot

5 heap state mutation “ “ rep invariants

HW Squares

Facts

* Basic inputs to reasoning are “facts”
— things we know to be true about the variables

1]

— typically, “=" or “<”

// n must be a natural number

const f = (n: bigint): bigint => ({
const m = 2n * n;
return (m + 1n) * (m — 1n);

find facts by reading along path

I
from top to return statement

At the return statement, we know these facts:
—neN (ornE€Zandn = 0)

— m=2n

Facts

* Basic inputs to reasoning are “facts”
— things we know to be true about the variables
— typically, “=" or “<”

// n must be a natural number

const f = (n: bigint): bigint => ({
const m = 2n * n;
return (m + 1n) * (m — 1n);

s

* No need to include the fact that n is an integer (n € Z)
— that is true, but the type checker takes care of that
— ho need to repeat reasoning done by the type checker

Implications

* We can use the facts we know to prove more facts

— if we can prove R using facts P and Q,
we say that R “follows from” or “is implied by” P and Q

— proving this fact is proving an “implication”

* Proving implications is hecessary for checking correctness...

Checking Correctness

* Specifications include two kinds of facts
— promised facts about the inputs (P and Q)
— required facts about the outputs (R)

 Checking correctness is just proving implications
— proving facts about the return values

* Two ways reasoning could be required:

— declarative spec has facts that must hold for the return value
— different imperative spec: must check expressions are “="

Implications

* We can use the facts we know to prove more facts

— if we can prove R using facts P and Q,
we say that R “follows from” or “is implied by” P and Q

* Proving implications is the core step of reasoning
— other techniques output implications for us to prove

* The techniques we will learn are
— proof by calculation
— proof by cases

— structural induction } gives us two implications,
each usually proven by calculation

Proof by Calculation

* Proves an implication
— fact to be shown is an equation or inequality

e Uses known facts and definitions
— latter includes, e.g., the fact that len(nil) =0

Example Proof by Calculation

e Givenx=yandz <10, provethatx+z <y + 10
— show the third fact follows from the first two

e Start from the left side of the inequality to be proved

X+z =y+z <y+10

|)

I
| J

Y
Y sincez <10

since X =

All together, this tellsus that x+z < y+ 10

Example Proof by Calculation

e Givenx=yandz <10, provethatx+z <y + 10
— show the third fact follows from the first two

e Start from the left side of the inequality to be proved

X+z =y+z since x =y
<y+10 since z < 10

— easier to read when split across lines

— “calculation block”, includes explanations in right column
proof by calculation means using a calculation block

— “=" or “<” relates that line to the previous line

Calculation Blocks

 Chain of “=" shows first = last

a =b sincea=>0
sinceb =c
=d sincec=d

— proves thata=4d
— all 4 of these are the same number

Calculation Blocks

e Chain of “=" and “<” shows first < last

X+z =y+z since x =y
<y+10 sincez < 10
=y+3+7
<w-+7 sincey+3<w

— each number is equal or strictly larger that previous

— analogous for “2”

Using Calculation to Prove Correctness

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, vy, bigint): bigint => {
return x + y;

s

* Known facts “x > 1" and “y = 1"

 Correct if the return value is a positive integer

X+y =>x+1 sincey >1
>1+1 sincex > 1
= 2
>1

— calculation shows that x +y =1

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, vy, bigint): bigint => {

return x + y;

s

* Known facts “x = 9” and “y = -8”

 Correct if the return value is a positive integer

X+y

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, vy, bigint): bigint => {

return x + y;

s

* Known facts “x = 9” and “y = -8”

 Correct if the return value is a positive integer

X+y >x+ -8 since y > -8
>9-8 sincex=>9
=1

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, vy, bigint): bigint => {
return x + y;

s

* Known facts “x > 4” and “y = 5”

* Correct if the return value is 10 or larger

X+y

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, vy, bigint): bigint => {
return x + y;

s

* Known facts “x > 4” and “y = 5”

* Correct if the return value is 10 or larger

X+y >X+5 sincey > 5
>4 +5 sincex = 4
=9

proof doesn’t work because the code is wrong!

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, vy, bigint): bigint => {

return x + y;

s

* Known facts “x > 8” and “y > -9”

 Correct if the return value is a positive integer

X+y >x+-9 sincey > -9
>8-9 since x > 8
=-1

proof doesn’t work because the proof is wrong

warning: avoid using “>” (or “<“) multiple times in a calculation block

Using Definitions in Calculations

* Most useful with function calls
— cite the definition of the function to get the return value

* For example:

0
x + sum(L) for any x € Z

func sum(nil)

sum(cons(x, L))
and any L € List

* Can cite facts such as
— sum(nil) =0
— sum(cons(a, cons(b, nil))) = a + sum(cons(b, nil))

second case of definition with x = a and L = cons(b, nil)

Using Definitions in Calculations

func sum(nil) =0
sum(cons(x, L)) := x4+ sum(L) for any x € Z
and any L € List

® Know “a 2 077’ “b 2 O”’ and “L — Cons(a’ COI’]S(b’ nil))”

* Prove the “sum(L)” is non-negative

sum(L)

Using Definitions in Calculations

0
x + sum(L) for any x € Z

func sum(nil)

sum(cons(x, L))
and any L € List

® Know “a 2 077’ “b 2 O”’ and “L — Cons(a’ COI’]S(b’ nil))”

* Prove the “sum(L)” is non-negative

sum(L) = sum(cons(a, cons(b, nil)) since L = cons(a, cons(b, nil))
= a + sum(cons(b, nil)) def of sum
=a+ b + sum(nil) def of sum
=a+b def of sum
>0+b sincea >0

>0 sinceb >0

Proof by Calculation

What We Get from Reasoning

* |f the proof works, the code is correct
— why reasoning is useful for finding bugs

* |f the code is incorrect, the proof will not work

* |f the proof does not work, the code is probably wrong

could potentially be an issue with the proof (e.g., two “<”s)
but that is a rare occurrence

Finding Facts at a Return Statement

 Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const £ = (a: bigint, b: bigint): bigint => {
const L: List = cons(a, cons(b, nil));
if (a >= 0On && b >= 0On)

return sum (L) ;

find facts by reading along path
from top to return statement

« Known facts include “a > 0", “b > 0”7, and “L = cons(...)”

Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, vy, bigint): bigint => {
if (y < On) {
return x + y;
} else {
return x - 1n;

}
s

* Known fact in then (top) branch: “y < -1”

X+y

Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, vy, bigint): bigint => {
if (y < On) {
return x + y;
} else {
return x - 1n;

}
s

* Known fact in then (top) branch: “y < -1”

X+y <x+-1 sincey < -1
<x+4+0 since-1<0

=X

Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, vy, bigint):
if (v < On) {
return x + y;
} else {
return x - 1n;

}
s

* Known fact in else (bottom) branch

x-1

bigint => {

: “y 2 077

Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, vy, bigint): bigint => {
if (y < On) {
return x + y;
} else {
return x - 1n;

}
s

* Known fact in else (bottom) branch: “y = 0”

x-1 <x+0 since-1<0

=X

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, vy, bigint): bigint => {
if (v < On) {
return x + y;
} else {

return x - 1n;

}
s

* Conditionals give us extra known facts

— get known facts from

1. specification find facts by reading along path

2. conditionals from top to the return statement
3. constant declarations

Proving Correctness with Multiple Claims

 Need to check the claim from the spec at each return

* |f spec claims multiple facts, then
we must prove that each of them holds

// Inputs x and y are integers with x <y -1
// Returns a number less than y and greater than x.

const f = (x: bigint, vy, bigint): bigint => { .. };

— multiple known facts: x: Z,y: Z, and x <y -1

— multiple claims to prove: x <randr <y
where “r” is the return value

— requires two calculation blocks

Recall: Max With an Imperative Specification

// Returns a if a > b and b if a < b
const max = (a: bigint, b, bigint): bigint => {
if (a >= b) {

return a;
straight from the spec

(imperative spec)

} else {
return b;

s

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r > > a and r > Db
const max = (a: bigint, b, bigint): bigint => {
if (a >= b) {

return a;
not straight from the spec

1
} else ({ (declarative spec)

return b;

}
s

 Three different facts to prove at each return

 Two known facts in each branch (return value is “r”):
— then branch: a=b and r=a
— else branch: a<band r=b

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r > > a and r > Db

const max = (a: bigint, b, bigint): bigint => {
if (a >= b) {
return a; Knowa>b and r=a
} else {

return b;

}
s

e Correctness of return in “then” branch:
— r=aholds so “r=aorr =>b" holds,
— r = a holds so “r > a” holds, and

r =a
>b sincea=>b

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r > > a and r > Db
const max = (a: bigint, b, bigint): bigint => {
if (a >= b) {
return a;
} else {
return b; Knowa<b and r=b
}
i

* Correctness of return in “else” branch:
— r=Db holds so “r =a orr =b” holds,
— r = b holds so “r = b” holds, and
— r = a holds since we have r > a:

r =b
> a sincea<b

Sum of a List

const £ = (a: bigint, b: bigint): bigint => {
const L: List = cons(a, cons(b, nil));
const s: bigint = sum(L); // = a + b

s

* Can prove the claim in the comments by calculation

sum(L)

0
x+sum(L) foranyx € Z and any L € List

func sum(nil)

sum(cons(x, L))

Sum of a List

const £ = (a: bigint, b: bigint): bigint => {
const L: List = cons(a, cons(b, nil));
const s: bigint = sum(L); // = a + b

s

* Can prove the claim in the comments by calculation

sum(L) = sum(cons(a, cons(b, nil))) since L = ...
= a + sum(cons(b, nil)) def of sum
=a+ b + sum(nil) def of sum
=a+b def of sum
func sum(nil) =0

sum(cons(x, L)) x+sum(L) foranyx € Z and any L € List

Sum of a List

const £ = (a: bigint, b: bigint): bigint => {
const L: List = cons(a, cons(b, nil));
const s: bigint = sum(L); // = a + b

* Can prove the claim in the comments by calculation

sum(cons(a, cons(b, nil)))=... =a+b

 For which values of a and b does this hold?

holds foranya€Z and b € Z

What We Have Proven

* We proved by calculation that

sum(cons(a, cons(b, nil))) =a+b

* This holds foranya€Z and b € Z

 We have proven infinitely many facts
— sum(cons(3, cons(5, nil))) =8
— sum(cons(-5, cons(2, nil))) =-3

— replacing all the ‘a’s and ‘b’s with those humbers
gives a calculation proving the “=" for those numbers

What We Have Proven

* We proved by calculation that

sum(cons(a, cons(b, nil))) =a+b foranya,beZ

 We can use this fact for any a and b we choose
— our proof is a “recipe” that can be used for any a and b

— just as a function can be used with any argument values,
our proof can be used with any values for the “any” variables
(any values satisfying the specification)

— use “for any ...” to make clear which things are variables

* This is called a “direct proof” of the “for any” claim

Binary Trees

Binary Trees

type Tree := empty | node(x:Z, L: Tree, R: Tree)

* Inductive definition of binary trees of integers

node(1, node(2, empty, empty), node(3, empty, node(4, empty, empty))))

Height of a Tree

type Tree := empty | node(x: Z, L: Tree, R: Tree)

* Height of a tree: “maximum steps to get to a leaf”

Height of a Tree

type Tree := empty | node(x: Z, L: Tree, R: Tree)

 Mathematical definition of height

func height(empty) =
height(node(x, L, R)) :=

forany x € Z and any L, R € Tree

Height of a Tree

type Tree := empty | node(x: Z, L: Tree, R: Tree)

 Mathematical definition of height

-1
1 + max(height(L), height(R))
forany x € Z and any L, R € Tree

func height(empty)
height(node(x, L, R))

Using Definitions in Calculations

func height(empty) = -1
height(node(x, L, R)) := 1 + max(height(L), height(R))
forany x € Z and any L, R € Tree

* Suppose “T = node(1, empty, node(2, empty, empty))”

* Prove that height(T) =1

height(T)

Using Definitions in Calculations

* Suppose “T = node(1, empty, node(2, empty, empty))”

func height(empty) = -1
height(node(x, L, R))

* Prove that height(T) =1

height(T)

= height(node(1, empty, node(2, empty, empty))

= 1 + max(height(empty), height(node(2, empty, empty)))
= 1 + max(-1, height(node(2, empty, empty)))

=1+ max(-1, 1+ max(height(empty), height(empty)))
=1+ max(-1, 1+ max(-1, height(empty)))

=1+ max(-1, 1+ max(-1, -1))

=1+ max(-1, 1+ -1)

=1+ max(-1, 0)

=1+0

=1

1 + max(height(L), height(R))
forany x € Z and any L, R € Tree

since T = ...
def of height
def of height
def of height
def of height
def of height
def of max

def of max

Trees

* Trees are inductive types with a constructor that
has 2+ recursive arguments

* These come up all the time...

— ho constructors with recursive arguments = “generalized enums”
— constructor with 1 recursive arguments = “generalized lists”
— constructor with 2+ recursive arguments = “generalized trees”

* Some prominent examples of trees:

— HTML: used to describe Ul
— JSON: used to describe just about any data

Recall: HTML

* Nesting structure describes the tree

<div>
<p id="firstParagraph”> Some Text </p>

<div>
<p>Hello</p>
</div>
</div>

Custom Tags for Modularity

* The React library lets you write “custom tags”
— functions that return HTML

return (
<div>
<p>Hi, Alice!</p>
<p>Hi, Bob!</p>
</div>) ;

can become

return (
<div>
<SayHi name={“Alice”}/>
<SayHi name={“Bob”}/>
</div>);

Custom Tags for Modularity

* The React library lets you write “custom tags”

return (
<div>
<SayHi name={“Alice”}/>
<SayHi name={“Bob”}/>
</div>);

makes two calls to this function

const SayHi = (props: {name: string}): JSX.Element => {
return <p>Hi, {props.name}</p>;
} i

— attributes are passed as a record argument (“props”)

Custom Tags for Modularity

return (
<div>
<SayHi name={“Alice”} lang={“es”}/>
<SayHi name={“Bob”}/>
</div>) ;

makes two calls to this function

type SayHiProps = {name: string, lang?: string};

const SayHi = (props: SayHiProps): JSX.Element => {
i1f (props.lang === Yes”) {
return <p>Hola, {props.name}</p>;
} else {

return <p>Hi, {props.name}</p>;

s

Custom Tags for Modularity

* The React library lets you write “custom tags”
— attributes are passed as a record argument (“props”)

* |In render, React will paste the parts together:

<div>
<SayHi name={“Alice”} lang={“es”}/>
<SayHi name={“Bob”}/>

</div>

becomes

<div>
<p>Hola, Alice!</p>
<p>Hi, Bob!</p>
</div>

Custom Tags for Modularity

« HTML literal syntax allows any tags

return (
<div>
<SayHi name={“Alice”} lang={“es”}/>
<SayHi name={“Bob”}/>
</div>) ;

— evaluates to a tree with two nodes with tag name “sayHi”
— this matters when testing (comes up in HW3)

* React’s render method is what calls savyHi
— HTML returned is substituted where the “sayHi” tag was

React Render

* React’s render pastes strings together

const name: string = “Fred”;

return <p>Hi, {name}</p>;
returns a different tree than

return <p>Hi, Fred</p>;

— in first tree, “p” tag has one child
— in second tree, “p” tag has two children
— render method concatenates text children into one string

 These differences matter for testing!

React Render

* React’s render pastes arrays into child list

const L = [Hi, Fred];
return <p>{L}</p>;

returns a different tree than

return <p>HiFred</p>;

— in first tree, “p” tag has one child
— in second tree, “p” tag has two children
— render method turns the first into the second

 These differences matter for testing!

