
CSE 331: Software Design & Implementation

Section Weave

1. It’s Forward Against Mine
In this problem, we will practice using forward reasoning to check the correctness of assignments. Assume that all
variables are bigints. Do not use subscripts for this problem (they are not necessary), instead write assertions
in terms of the current values of variables.

(a) Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following code.
Then prove that the stated postcondition holds.

{{x ≥ 4 }}
y = x - 2n;

{{ }}
z = 2n * y;

{{ }}
z = z - 2n;

{{ }}
{{ z ≥ 0 }}

(b) Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following code. Then
prove that the stated postcondition holds. (Reminder that with bigint, division is truncating division.)

{{x < 4 }}
y = x + 4n;

{{ }}
x = 2n * x;

{{ }}
y = y + x;

{{ }}
{{ y < 16 }}

1



2. Not For a Back of Trying
In this problem, we will practice using backward reasoning to check the correctness of assignments. Assume that
all variables are bigints.

(a) Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following code. Then
prove that the stated precondition implies what is required for the code to be correct.

Feel free to simplify the intermediate assertions (i.e., rewrite them in an equivalent, but simpler, way).
However, the assertions you write must be equivalent to still be weakest preconditions.

{{x < w + 1 }}
{{ }}
y = 3n * w;

{{ }}
x = x * 3n;

{{ }}
z = x - 9n;

{{ z < y }}

(b) Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following code. Then
prove that the stated precondition implies what is required for the code to be correct.

Feel free to simplify the intermediate assertions (i.e., rewrite them in an equivalent, but simpler, way).
However, the assertions you write must be equivalent to still be weakest preconditions.

{{x > 1 }}
{{ }}
y = x - 4n;

{{ }}
z = 3n * y;

{{ }}
z = z + 6n;

{{ z ≥ y }}

2



3. Nothing to Be If-ed At
In this problem, we will practice using forward reasoning to check correctness of if statements. Assume that all
variables are bigints.

(a) Use forward reasoning to fill in the assertions. Then, combine the branches to assert the invariant we know
at the end of the conditional and complete an argument by cases that this invariant implies {{y ≥ 2}}.

Assume that x and y are both integers.

{{x ≥ 0 }}
if (x >= 6n) {

{{ }}
y = 2n * x - 10n;

{{ }}
} else {

{{ }}
y = 20n - 3n * x;

{{ }}
}

{{ or }}
{{ y ≥ 2 }}

(b) Use forward reasoning to fill in the assertions. Then, combine the branches to assert the invariant we know
at the end of the conditional and complete an argument by cases that this invariant implies {{s ≥ 1}}.

Assume that s and t are both integers.

{{ s ̸= t and t > 0 }}
if (s >= t) {

{{ }}
s = s / t;

{{ }}
} else {

{{ }}
s = t - s;

{{ }}
}

{{ or }}
{{ s ≥ 1 }}

3



4. Chicken Noodle Loop
The function sum-abs calculates the sum of the absolute values of the numbers in a list. We can give it a formal
definition as follows:

func sum-abs(nil) := 0

sum-abs(cons(x, L)) := −x+ sum-abs(L) if x < 0 for any x : Z and L : List
sum-abs(cons(x, L)) := x+ sum-abs(L) if x ≥ 0 for any x : Z and L : List

In this problem, we will prove that the following code correctly calculates sum-abs(L). The invariant for the
loop is already provided. It references L0, which is the initial value of L when the function starts.

let s: bigint = 0;

{{ Inv: s+ sum-abs(L) = sum-abs(L0) }}
while (L.kind !== ”nil”) {

if (L.hd < 0n) {

s = s + -L.hd;

} else {

s = s + L.hd;

}

L = L.tl;

}

{{ s = sum-abs(L0) }}

(a) Prove that the invariant is true when we get to the top of the loop the first time.

(b) Prove that, when we exit the loop, the postcondition holds.

(c) Prove that the invariant is preserved by the body of the loop. To do this, use backward reasoning to
reason through the last assignment statement “L = L.tl;”. Then, use forward reasoning for each branch
of the “if” statement (as in Problem 3). Finally, complete the correctness check by verifying that each of
the assertions you produced with forward reasoning implies the assertion produced by backward reasoning
immediately above the last assignment statement.

We have previously used the fact that, when L ̸= nil, we know that L = cons(x,R) for some x : Z
and R : List. However, in the code, we know exactly what x and R are, namely, x = L.hd and R = L.tl.
Hence, when L ̸= nil, we actually have L = cons(L.hd, L.tl). Feel free to use that in your proof.

4



5. The Only Game in Down
The function “countdown” takes an integer argument “n” and returns a list containing the numbers n, . . . , 1. It
can be defined recursively as follows:

func countdown(0) := nil
countdown(n+ 1) := cons(n+ 1, countdown(n)) for any n : N

This function is defined recursively on a natural number so it fits the natural number template from lecture.

(a) Using the template described in lecture, give the invariant for a loop implementation of this function.

Assume that the variable counting up to n is called “i” and the partial-result is stored in a variable
called “L” (rather than “s”).

(b) How do we initialize i and L so that the invariant is true initially?

(c) When do we exit the loop calculating “countdown(n)”? What should the condition of the while be?

(d) What code do we write in the body of loop so that the invariant remains true when i is increased by one?

Be careful! It’s easy to make a mistake here.

5



6. One, Two, Tree. . .
This problem makes use of the following inductive type, representing a left-leaning binary tree

type Tree := empty
| node(val : Z, left : Tree, right : Tree) with height(left) ≥ height(right)

The “with” condition is an invariant of the node. Every node that is created must have this property, and we are
allowed to use the fact that it holds in our reasoning.

The height of a tree is defined recursively by

func height(empty) := −1

height(node(x, S, T )) := 1 + height(S) for any x : Z and S, T : Tree

In a general binary tree, the height of a non-empty tree is the length of the longest path to a leaf. With a
left-leaning tree, we know the longest path is the one that always travels toward the left child.

We can define the size of a tree, the number of values stored in it, as follows:

func size(empty) := 0

size(node(x, S, T )) := 1 + size(S) + size(T ) for any x : Z and S, T : Tree

Prove by structural induction that, for any left-leaning tree U , we have

size(U) ≤ 2height(U)+1 − 1

6


