
CSE 331
Software Design & Implementation

Summer 2024
Section Weave – Imperative Programming I

Administrivia

• HW Weave released Thursday evening, due Wednesday at
11pm

• Can submit as many times as you’d like until the deadline.
– Use the autograder as a tool if you’re not sure if your

code/tests have bugs
• We will always tell you when you can use subscripts in

forward/backwards reasoning: default rule (when not specified) is
to not use subscripts

Hoare Triples – Review
• A Hoare Triple has 2 assertions and some code

{{ P }}
 S
{{ Q }}

– P is a precondition, Q is the postcondition
– S is the code

• Triple is “valid” if the code is correct:
– S takes any state satisfying P into a state satisfying Q

• Does not matter what the code does if P does not hold
initially

Stronger vs Weaker – Review
•

• Different from strength in specifications:
– A stronger spec:

• Stronger postcondition: guarantees more specific output
• Weaker precondition: handles more allowable inputs

 compared to a weaker one

Forward Reasoning – Review
• Forwards reasoning fills in the postcondition

– Gives strongest postcondition making the triple valid
• Apply forward reasoning to fill in R

– Check second triple by proving that R implies Q

Backward Reasoning – Review
• Backwards reasoning fills in preconditions

– Just use substitution!
– Gives weakest precondition making the triple valid

• Apply backwards reasoning to fill in R

– Check first triple by proving that P implies R

• Good example problems in section worksheet!

Question 1a

Question 1b

Question 2a

Question 2b

Conditionals – Review
• Reason through “then” and “else” branches independently and

combine last assertion of both branches with an “or” at the end
• Prove that each implies post condition by cases

Question 3a

Question 3b – “then” branch

Question 3b – “else” branch

Loop Invariant – Review

• Loop invariant must be true every time at the top of the loop
– The first time (before any iterations) and for the beginning of

each iteration
• Also true every time at the bottom of the loop

– Meaning it’s true immediately after the loop exits
• During the body of the loop (during S), it isn’t true

• Must use “Inv” notation to indicate that it’s not a standard
assertion

true!{{Inv: I}}
while (cond) {
 S
}

true!
true!

true!

Well-Known Facts About Lists
•

Question 4

(a) Invariant is true
at top of loop the
first time

(c) Invariant is
preserved by loop
body

(b) Postcondition
holds when we exit

Question 4a
Prove that the invariant is true at top of loop the first time

(a)

Question 4b
Prove that, when we exit the loop, the postcondition holds

(b)

Question 4c
Prove that the invariant is preserved by the body of the loop

(c)

• First, use backward reasoning to reason through last assignment

Question 4c
Prove that the invariant is preserved by the body of the loop
• Then, forward reasoning through the “then” branch Inv & loop

condition!

Question 4c
• Then, forward reasoning through the “else” branch

Question 4c

Trees Review

● height of nonempty tree is length of longest path to a leaf
● left-leaning tree: longest path is the one that travels towards the left

child

invariant only for left-leaning trees

Question 6

