
UW CSE 331 Summer 2024

CSE 331
Software Design & Implementation

Summer 2024
Section Quilt – Functional Programming I

Administrivia

• HW Quilt released Thursday evening, due Wednesday (7/10) at
11pm
– Please! Start early! HW Quilt and beyond is MUCH more time

consuming and challenging than previous homeworks
– Give yourself time to come to OH and ask questions on Ed
– Working on the same issue for hours when you’re stuck won’t

help, ask for help!
– Please look at output of autograder. It will give helpful

feedback

Review – Inductive Data Types
• Describe a set by ways of creating an element of the type

– Each is a “constructor”
– Second constructor is recursive
– Can have any number of parameters

Ex: base case recursive case

1 2 3

Review – Structural Recursion

• Inductive types: builds new values from existing ones
• Structural recursion: recurse on smaller parts

– Call on n recurses on n.val
– Guarantees no infinite loops
– Note: only kind of recursion used for this class

Ex:

– Any List is either nil or of the form cons(x, L) for some number
x and List L

– Cases of function are exclusive and exhaustive based on ⤴

Testing
describe(‘example’, function() {
 it(‘testBar’ function() {
 /* assert statements */
 })
})

• Use assertions to compare expected and actual output for each test
case
– assert.deepStrictEqual(expected, actual); should

be used generally

• Keep your tests simple! Don’t want to have to write tests for your
tests

• Note: Please do not submit commented out test cases to
gradescope. The course staff will not count those as valid test
cases. It is better to submit failing test cases than commented out
test cases.

Testing – Strict vs Deep
Assertion Failure Condition
assert.strictEqual(expected, actual) expected !== actual
assert.deepStrictEqual(expected, actual) values/types of child objects are not equal

this will fail

this will pass

two different objects,
but same record values

Testing – Documenting
• Document which subdomain you are testing. A justification:

heuristic used, part of code it tests.

Ex:
describe(‘example’, function() {

 it(‘testBar’ function() {

 /* comment describing subdomain being tested */
 assert...
 })
})

Name of class being tested

Name of test (can be function being tested)

Definitions

• Len – returns the length of a list:

• Sum – returns the sum of the integers in the list:

Question 1
twice takes a list and returns a list of the same length but
with every number in the list multiplied by 2

Show the result of applying twice to each list:

Question 1

Question 1

Question 3
twice-evens takes a list and returns a list of the same
length but with every other number (at even indices) in
the list multiplied by 2

Show the result of applying twice-evens to each list:

Question 3

Question 3

Question 2

Comments // are the spec, but the code isn’t a direct
translation of the spec (level 1)

Need to prove it does the same thing as the spec

Question 2

(a)

Question 2

Question 4

Question 4
Given this code:

And the fact we proved in (a):

HW Quilt Reminders/Recommendations:

• No mutation! Make a new variable for new values you calculate

• Proofs by calculation require explanations/rules for every line
(except basic algebra, you can say “math” if you want)

• Proofs by calculation can start with the left or right side of the = to
prove

• We won’t penalize you for more test cases than the minimum
required!

• If you get errors that “property ___ does not exist on
type ___" it probably means you are missing a nil check

Proof by calculation LaTeX
• Optional, if you’re using LaTeX feel free to use this to align proofs:

$$\begin{aligned}
 & first line of proof && \\
 &\qquad = line of proof && \text{rule} \\
 &\qquad = line of proof && \text{rule} \\
\end{aligned}$$

• and to align functions:

$$\begin{aligned}
 \textbf{func } & \textsf{funcName}(case)
 &&:= result &\text{side cond} \\
 & \textsf{funcName}(case)
 &&:= result &\text{side cond} \\
\end{aligned}$$

