
UW CSE 331 Summer 2024

CSE 331
Software Design & Implementation

Summer 2024
Section 2 – HW Levels: Correctness, Specifications, &

Testing

Where are we?
Basics of Typescript
Basics of the browser

• Math notation & specifications
• Correctness concepts
• Testing

o Reasoning techniques (for levels 2-5)
o Abstraction
o App design / more complex React apps
o + more!

Common Bugs
• Some common bugs to lookout for in your homework:

– Using the wrong boundary case (using < instead of <= in an
if condition)

– Mixing up parameter order
• if a function takes in 2 bigints as parameters, it is easy

to pass in the parameters in the wrong order
– Typos in variable names and functions
– Base case error

• Your function’s base case may be returning a
hardcoded value (like 0) when it should return a
different value

– Copy and Paste error
• You may have copied a function stub and forgot to

change the parameters
• Copied test cases and forgot to change the function

called in them

Review – Correctness

• Test all possible cases if reasonable, then use heuristics to
approximate

• As code increases ⬆ in complexity, formality and complexity of
reasoning technique must increase ⬆ too

• heap state mutation is the “worst case” for how difficult it is to be
confident it’s correct

Level Description Testing Tools Reasoning

0 small # of inputs exhaustive

1 straight from spec heuristics type checking code reviews

2 no mutation “ libraries calculation
 induction

3 local variable mutation “ “ Floyd logic

4 array mutation “ “ for-any facts

5 heap state mutation “ “ rep invariants

Question 1

Question 1

Question 1

Question 1

Review – Math Notation

Made up for
this class

Standard
notations

Review – Math Notation

•

Question 2

Question 2

half : (undefined ∪ N) → Z

Question 2

Question 3

Review – Testing
• Straight-Line Calculation:

– Simplest type of code. Performs calculation without any
recursive calls or if statements

– Need a minimum of 2 test cases (to ensure that it is not just
returning a constant)

Ex: return 2n * (x – 1n);
Need 2 test cases

Review – Testing
• Conditionals:

– Code behaves differently on inputs that fall into the “if”
part vs the “else” part

– Boundary cases: where the code switches from the “if”
branch to the “else” branch

– If branch takes 2+ inputs, need at least 2 test cases
– If on a boundary, need to test each boundaries, and 1+

non-boundaries
Need 4 test cases:
• 2 for if branch
• 2 for else branch
• 1 boundary, so one of

the if cases should be
the boundary value

if (n >= 1n) {
 return 2n * (n - 1n) + 1n;
} else {
 return 0n;
}

Ex:

Review – Testing
• Recursion:

– 3 subdomains: inputs that cause 0, 1, 2+ recursive calls
• called the “0-1-many” heuristic

– Apply the same rules as before for each subdomain
– For 2+ recursive calls, only need to look at the first two calls
– make subdomains as specific as possible: i.e. two inputs that both

make 0 recursive calls but are in separate branches are in different
subdomains

Ex:
// n must be a positive integer
const f = (n: bigint): number => {

if (n === 1n) {
return 0;

} else {
return 1 + f(1n + (n – 2n) / 2n);

}

}

Tests:
- 1 (0 recursive calls)
- 2, 3 (1 recursive call)
- 4, 10 (many recursive
calls)

Question 4a

Question 4b

Question 4c

