
UW CSE 331 Summer 2024

CSE 331
Software Design & Implementation

Summer 2024
Section 1 – HW Fib and Tools

1

Welcome
• Let’s all introduce ourselves:

– Name and pronouns
– Year
– What other classes you are taking this quarter
– Plans for summer??

2

Administrivia
• Current assignments:

– Software Setup was due today @ 10:30 AM (see Ed for info)

– Knowledge Check due tomorrow (6/21) @ 11 PM

• HW Fib released tonight, due next Wednesday (6/27) @ 11 PM

• You may use one late day per each assignment! 🎉

3

https://edstem.org/us/courses/60053/discussion/5047239

Coding Setup
Software we will use (see course website for more info):
• Bash: command-line shell (built-in on Mac)

• Run echo "${BASH_VERSION}” to check for download
• Git: version control system (built-in on Mac, Windows version

comes with Bash, above)
• Node: executes JavaScript code on the command-line

• Run node –v to check for download
• NPM: package manager (comes with Node, above)
• VS Code: code editor

https://courses.cs.washington.edu/courses/cse331/24su/resources/#software-setup

Node Demo
• Node: executes JavaScript code on the command-line

• Run node –v to check for download

• Useful for playing with the JavaScript language

• Try this to see what it does (does it crash?)
• first start node and then type this in:

const x = {a: 1, b: "two"};
console.log(x.c);

Git Demo
• Git: version control system (built-in on Mac, Windows version

comes with Bash)

• Almost all professionals use some kind of version control system
• git is probably the most popular today
• git can be tricky to learn / understand

• We will only need it for getting the starter code

NPM Demo
• NPM: package manager (comes with Node)

• Used to
• install all the libraries needed for our code
• compile, test, and run our code

• Use this command to install the libraries needed for section

npm install --no-audit

(leaving off --no-audit will generate some bogus error messages)

VSCode Demo
• VS Code: code editor

• VS Code is relatively lightweight IDE
• primary support for JavaScript and TypeScript (good for us)

• Extensions provide support for other languages and tools

• We will want the comfy-tslint extension
• verifies that our code satisfies 331 coding conventions
• running npm run lint will also do this

NPM Start
• NPM: package manager (comes with Node)

• Use this command to start

npm run start

• Then navigate to this URL in Chrome to see it work

http://localhost:8080

Browser Operation
• Browser reads the URL to find the server to talk to

• Contact the given server and request the given path:

request

response
(HTML)

server
name

path

Browser Operation

• HTML page can load JavaScript
• starter code’s index.html includes index.tsx

• Each time the page loads, browser executes index.tsx

request

response
(HTML)

Development Environment

• “npm run start” starts a server that the browser can contact
• server is running on this machine (localhost)
• (more on servers later this quarter…)

• This server returns index.html but adds compiled JS into the page
• also adds code to reload if the source code is changed!

request

response
(HTML)

Starter Code Demo
• Starter code prints out the current date and time

console.log(new Date());

• Find the Developer Console in Chrome
• find the date that was printed

• Try reloading the page a few times
• verify that a new date is printed out each time

Global Variables
• The document object stores the HTML tree

• The window object has information about the browser window
• window.location stores information about the URL
• if URL = https://mail.google.com/mail/u/0/?zx=ABCD#inbox

window.location.hostname “mail.google.com”
window.location.pathname “/mail/u/0”
window.location.search “?zx=ABCD”
window.location.hash “#inbox”

Search String
https://mail.google.com/mail/u/0/?zx=ABCD#inbox

window.location.hostname “mail.google.com”
window.location.pathname “/mail/u/0”
window.location.search “?zx=ABCD”
window.location.hash “#inbox”

• the hostname tells the browser what server to contact
• the pathname is the HTML file that is requested
• the search string is effectively an argument to that file

• same code is executed in the browser
• but code can behave differently due to different parameters

• the hash is not sent to the server (and we won’t use it this quarter)

Query Parameters
• Search string is a list of name=value pairs, separated by “&”s

• these are often called “query parameters”
• this example has 3 parameters (called a, c, and e)

…?a=b&c=d&e=f

• JavaScript includes built-in tools for parsing the search string

const params = new
URLSearchParams(window.location.search);
console.log(params.get(“a”)); // prints “b”

• params.get returns a string or null (why?)

bigint ↔ number conversion
• Query parameters are always type “string”. So in order to get numbers, we must

convert the query parameters

• Some conversion operations that will be useful this quarter:
/* Converts string to a Number, returns NaN if not possible */

parseInt(value : string, 10)

/* Converts value to a Number, returns NaN if not possible */

Number(value: any)

/* Converts value to a BigInt, throws error if not possible */

BigInt(value: string | number | bigint | boolean)

Problem 1
• Change index.tsx to look for a parameter called “n”

• if it is found, print the n-th Fibonacci number to the console
• import fib function from fib.ts

• if it is not found, then print an error message
• if it is found but is not a non-negative integer, then print an

error

Problem 2
• Let’s put something on the screen this time!
• Change the code to display an HTML paragraph

• can be done something like this

const elem: HTMLElement | null =
document.getElementById(‘main’);
if (elem !== null) {
 const root: Root = createRoot(elem);
 root.render(<p>Fibonacci number 5 is 8.</p>);
}

• see the worksheet for the imports you will need
• Call to document.getElementById finds an HTML tag by id=“..” attribute

• index.html includes a tag with id=“main”

HTML Literals
• JS / TS allow HTML literals in the code

• Like strings, you can substitute variable values into the HTML
• uses {..} rather than ${..} (like `..` syntax)
• can substitute into the text like this

const name = “Fred”;
root.render(<p>Hi, {name}!</p>); // says Hi, Fred!

• can also substitute attribute values
• Note: If you want to use a BigInt inside an HTML literal, you must

first cast it to a Number

Problem 3
• Change the code to assume n = 0 if it was not provided

• Change the HTML to include links to pages for the prev/next Fib

• Use an “A” tag to make a link, e.g.:

<p>Show previous</p>

• need to calculate the URL in a variable
• then include it with ..

• Can only render one tree, so wrap multiple <p>s in a <div>

• Challenge: only show previous link if n > 0

