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Object-Oriented Programming

• We haven’t done any OO this quarter
– this week, we will see some reasons why!

• Plan for this week:
– focus on topics that are good to know but not needed for HW

usually, mistakes you want to avoid

– every lecture will include one related to OO



Subtypes



Subtypes of Concrete Types

• We initially defined types as sets

• In math, a subtype can be thought of as a subset
– e.g., the even integers are a subtype of ℤ
– e.g., the numbers {1, 2, 3, 4, 5, 6} are a subtype of ℤ
– likewise, a superset would be a supertype

• Any even integer “is an” integer
– “is a” is often (but not always) good intuition for subtypes



Subtypes of Concrete Types

• We initially defined types as sets

• In TypeScript, some subtypes are also subsets
– number has a set of allowed values
– it is a subtype of types that allow those values + more

unknown

number | string

number



Subtypes of Concrete Types

• We initially defined types as sets

• In TypeScript, some subtypes are also subsets
– record types require certain fields but allow more
– record type with a superset of the fields is a subtype

{name: string}

{name: string, completed: boolean}



Subtyping Used by TypeScript

• TypeScript uses subtyping in function calls

const f = (s: number | string): number => { … };

const x: number = 3;
… f(x) …

– types are not the same  (number  vs  number | string)
– subtype can be passed where super-type is expected

any element of the subtype “is an” element of the super-type

• Similar rules in Java



Subtyping Used by TypeScript

• TypeScript uses subtyping in function calls

const f = (n: number): number => { … };

const x: number | string = f(3);

– types are not the same  (number  vs  number | string)
– subtype can be returned where super-type is expected

any element of the subtype “is an” element of the super-type

• Similar rules in Java



Subtyping Used by TypeScript

• TypeScript only sees the declared types
– any other behavior is left to reasoning

• Example: invariants

// RI: 0 <= index < options.length
type OptionState = {
  options: string[],
  index: number
}



Subtyping Used by TypeScript

• OptionState is a subtype of the bare record type
– it is a record with those fields
– but reverse is not true

• TypeScript will see these as the same
– will let you pass the top where the bottom is expected

up to us to make sure this doesn’t happen

{options: string[], index: number}

OptionState



Subtypes of Abstract Types

• Recall: ADTs are collections of functions
– hide the concrete representation
– pass functions that operate on the data

create, observe, mutate

• “Subtypes are subsets” does not work well here
– set of all possible functions with … yuck

• Would be nice to find a cleaner approach



Subtypes Are Substitutable

• If B is a subtype of A, can send B where A is expected:

const f = (s: A): void => { … }
const g = (): B => { … }

const x: B = …;
f(x);              // okay

const y: A = g();  // okay

– okay to “substitute” a B where an A is expected

A

B



Subtypes Are Substitutable

• Subtypes are substitutable for supertype
– this is the “Liskov substitution principle”
– due to Barbra Liskov

• For ADTs, we use this as our definition of subtypes
– (for concrete types, subsets are usually easier)



Subtypes of Abstract Types

• When is ADT B substitutable for A?

• Must satisfy two conditions:

1. B must provide all the methods of A
If A has a method “f”, then B must have a method called “f”

2. B’s corresponding method must…
must accept all the inputs that A’s does
must also promise everything in A’s postcondition

I.e., B must have the same or a stronger spec



Review: Strengthening a Specification

interface A {
  f: (x: number) => number

  // @requires x >= 0
  g: (x: number) => number
}

• Stronger specs allow more (or same) inputs
– allowed argument types are supersets

interface B extends A {
  f: (x: number | string) => number
}

– fewer requirements on arguments
interface C extends A {
  g: (x: number) => number    // x can be negative
}



Review: Strengthening a Specification

interface A {
  f: (x: number) => number

  // @requires x >= 0
  g: (x: number) => number
}

• Stronger specs promise more (or same) outputs
– more specific return type (or thrown type)

interface D extends A {
  f: (x: number) => 0 | 1 | 2 | 3
}



Review: Strengthening a Specification

interface A {
  f: (x: number) => number

  // @requires x >= 0
  g: (x: number) => number
}

• Stronger specs promise more (or same) outputs
– more specific return type (or thrown type)
– more facts included in  @returns and @effects

interface E extends A {
  // @requires x >= 0
  // @returns an even integer
  g: (x: number) => number
}

– fewer objects listed in @modifies



Example: Rectangle and Square

• Is Square a subtype of Rectangle?
– math intuition says yes
– a square “is a” rectangle

• Let’s check this with substitutability…



Example: Immutable Rectangle and Square

interface Rectangle {
  getWidth: () => number,
  getHeight: () => number
}

// A rectangle with width = height
interface Square extends Rectangle {
  getSideLength: () => number
}

• Is Square substitutable for Rectangle?
– allows the same inputs (none)
– makes the same promises about outputs (numbers)
– adds another promise: both methods return same number

Yes

extra invariant
on abstract state
(an “abstract invariant”)



Example: Mutable Rectangle and Square

interface Rectangle {
  getWidth: () => number,
  getHeight: () => number
  resize: (width: number, height: number) => void
}

// A rectangle with width = height
interface Square extends Rectangle {
  // @requires width = height
  resize: (width: number, height: number) => void
}

• Is Square substitutable for Rectangle?
– allows fewer inputs to resize!

No!



Example: Mutable Rectangle and Square

• None of these work:

// @requires width = height
resize: (width: number, height: number) => void

// @throws Error if width != height
resize: (width: number, height: number) => void

// Sets height = width also
resize: (width: number , height: number) => void

• Mutation sometimes makes subtyping impossible
– yet another reason to avoid it

incomparable specs

weaker spec



Subclasses



Subclasses

• Subclassing is a means of sharing code
– subclass gets parent fields & methods (unless overridden)

class Product {
  private String name;
  private int price;
  public String getName() {return name; }
  public int getPrice() { return price; }
}

class SaleProduct extends Product {
  private float discount;
  public int getPrice() {
    return (1 – discount) * super.getPrice();
  }
}



Subclasses

• Subclassing does not guaranty subtyping relationship

class Product {
  public int getPrice() { ... }

  // @returns true iff obj’s price < p’s price
  public boolean isCheaperThan(Product p) {
    return getPrice() < p.getPrice();
  }
}

class WackyProduct extends Product {
  // @returns some boolean value
  public boolean isCheaperThan(Product p) {
    return false;
  }
} Legal Java, but not a subtype



Subclasses

• Java subclassing is a means of sharing code
– subclass gets parent fields & methods (unless overridden)

• Does not guarantee subtyping
– up to you to check that method specs are stronger

• Java treats it as a subtype
– will let you pass subclasses where superclass is expected

• Subclassing is a surprisingly dangerous feature
– that’s not the only reason…



Subclasses

• Subclassing is a surprisingly dangerous feature

• Subclassing tends to break modularity
– creates tight coupling between super- and sub-class
– often see the “fragile base class” problem

changes to super class often break subclasses

• Let’s see some Java examples…



Example 1: Tight Coupling

class Product {
  private int price;
  public int getPrice() { return price; }

  // @returns true iff obj’s price < p’s price
  public boolean isCheaperThan(Product p) {
    return getPrice() < p.getPrice();
  }

}

class SaleProduct extends Product {
  public int getPrice() {
    return (1 – discount) * super.getPrice();
  }
}

– looks okay so far…



Example 1: Tight Coupling

class Product {
  private int price;
  public int getPrice() { return price; }

  // @returns true iff obj’s price < p’s price
  public boolean isCheaperThan(Product p) {
    return this.price < p.price;
  }

}

class SaleProduct extends Product {
  public int getPrice() {
    return (1 – discount) * super.getPrice();
  }
}

Made it faster by eliminating a method call!

What’s wrong?

Oops! Broke the subclass



Example 2: Tight Coupling

class InstrumentedHashSet extends HashSet<Integer> {
  private static int count = 0;

  public boolean add(Integer e) {
    count += 1;
    return super.add(e);
  }

  public boolean addAll(Collection<Integer> c) {
    count += c.size();

    return super.addAll(c);
  }

  public int getCount() { return count; }
}

– what could possibly go wrong?



Example 2: Tight Coupling

InstrumentedHashSet S = new InstrumentedHashSet();
System.out.println(S.getCount());  // 0
S.addAll(Arrays.asList(1, 2));
System.out.println(S.getCount());

– what does this print?

• What is printed depends on HashSet’s addAll:
– if it calls add, then this prints 4
– if it does not call add, then this prints 2

• Also possible to be dependent on order of calls

// 4?!?



Subclassing Creates Tight Coupling

• Creates tight coupling between super- and sub-class

• Example 1: super-class needs to know about subclass
– direct field access in parent breaks subclass

• Example 2: subclass needs to know about super-class
– subclass dependent on which methods call each other

• But wait… There’s more!



Example 3: Tight Coupling

class WorkList {
  // RI: len(names) = len(times) and total = sum(times)
  protected ArrayList<String> names;
  protected ArrayList<Integer> times;
  protected int total;

  public addWork(Job job) {
    addToLists(job.getName(), job.getTime());

    total += job.getTime();
  }

  protected addToLists(String name, int time) {
    names.add(name);

    times.add(time);
  }

}



Example 3: Tight Coupling

// Makes sure no task is too large compared to rest
class BalancedWorkList extends WorkList {
  protected addToLists(String name, int time) {
    if (times.size() <= 3 || 2*time < total)
      super.addToLists(name, time);  // okay
    } else {
      throw new ImbalancedWorkException(name, time);
    }
  }

}

– prevents item from being added if too big
– (also: this subclass is not a subtype!)



Example 3: Tight Coupling

class WorkList {
  // RI: len(names) = len(times) and total = sum(times)
  protected ArrayList<String> names;
  protected ArrayList<Integer> times;
  protected int total;

  public addWork(Job job) {
    int time = job.getTime();  // just one call
    total += time;
    addToLists(job.getName(), time);

  }

}

– reordering the updates breaks the subclass!
– subclass is using total that includes the new job

RI not true in method call



Example 3: Tight Coupling

• RI can be false in calls to non-public methods
– only needs to hold at end of the public method

• Requires extra care to get it right
– method is tightly coupled with the ones that call it
– needs to know what is true in those methods

not enough to just know the RI

• Hard for multiple people to communicate this clearly
– can be okay when it’s all your code
– very error prone when methods are written by others



Subclassing Creates Tight Coupling

• Creates tight coupling between super- and sub-class
– direct field access can break subclass
– subclass dependent on which methods call each other
– subclass dependent no order of method class
– subclass can be called when RI is false

• Often see the “fragile base class” problem

• Subclassing is a surprisingly dangerous feature!
– up to you to verify subclass method specs are stronger
– up to you to prevent tight coupling



Subclassing is Best Avoided

• Java advice: either design for subclassing or prohibit it
– from Josh Bloch, author of (much of) the Java libraries

• We haven’t used subclassing in TypeScript
– didn’t even describe how to do it!

we’ve just used classes as a quick way to create records

– these problems are the main reason why we avoided it

• Subclassing is not necessary anyway
– we have other ways to share code



Equality



Equity of User-Defined Types

• For any type, useful to know which are “the same”

• TypeScript “===” is not useful on records:

{a: 1} === {a: 1}  // false!

– as in Java, this is “reference equality”
– tells you if they refer to the same object in memory

• deepStrictEquals would work here
– checks that the records have the same fields and values
– but that also is not perfect…



Recall: Queue With Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

  // AF: obj = concat(this.front, rev(this.back))
  readonly front: List<number>;
  readonly back: List<number>;

– two ways of representing the same abstract state:

{front: cons(1, cons(2, nil)), back: nil}  // = 1, 2
{front: nil, back: cons(2, cons(1, nil))}  // = 1, 2

– these should be considered equal!



Equality 

• Often useful / necessary to define your own equal
– check if references point to records that are “the same”

• Sensible definition should act like “=” in math:

1. equal(a,	a)	=	T  for	any	a	:	A

2. equal(a,	b)	=	equal(b,	a)		for	any	a,	b	:	A

3. if	equal(a,	b)	and	equal(b,	c),	then	equal(a,	c)		for	any	…

– (311 alert: this is an “equivalence relation”)
– Java has two more rules for equals (see Java docs)

reflexive

symmetric

transitive



Example: Duration

• Define Duration representing an amount of time

type	Duration	=	{min	:	ℤ,	sec	: ℤ}		with		0	≤	sec	<	60

– second part is a rep invariant

• Can define equality on Duration this way:

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

– true iff these are the same amount of time
(wouldn’t be true without the invariant)



Example: Duration

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

• Does this have the required properties?
– reflexive

equal({min:	m,	sec:	s},	{min:	m,	sec:	s})
				=	(m	=	m)	and	(s	=	s)	 	 	 	 	 def of equal
				=	T	and	T
				=	T

– symmetric

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})
				=	(m	=	n)	and	(s	=	t)	 	 	 	 	 def of equal
				=	(n	=	m)	and	(t	=	s)
				=	equal({min:	n,	sec:	t},	{min:	m,	sec:	s})	 def of equal

proof by calculation
that it holds for any record



Example: Duration

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

• Does this have the required properties?
– reflexive   yes
– symmetric  yes
– transitive  also yes (but a little long for a slide)

• Good evidence that this is a reasonable definition



Non-Example: “==” in JavaScript

0 == “0”	 	 true
 0 == “”	 	 true
 0 == “ ”	 	 true

• Does this have the required properties?
– reflexive   yes
– symmetric  yes
– transitive  

• Good evidence that this is not a reasonable definition

no!  (“” != “ “)



Example: List Equality

• Can define equality on List type this way:

equal(nil,	nil)		 	 	 	 :=	 T
equal(nil,	cons(b,	R))	 	 	 :=	 F	 	 	
equal(cons(a,	L),	nil)	 	 	 :=	 F
equal(cons(a,	L),	cons(b,	R))	 :=	 F	 	 	 if	a	≠	b
equal(cons(a,	L),	cons(b,	R))	 :=	 equal(L,	R)	 if	a	=	b

• Checks that the values in the list are all the same
– this is a definition, so we can only check it on examples…

1 2 1 2equal(																						,																						) 2 2=	equal(								,									)

=	equal(nil,	nil)

=	T



=	equal(								,									)equal(																						,																						)

Example: List Equality

• Can define equality on List type this way:

equal(nil,	nil)		 	 	 	 :=	 T
equal(nil,	cons(b,	R))	 	 	 :=	 F	 	 	
equal(cons(a,	L),	nil)	 	 	 :=	 F
equal(cons(a,	L),	cons(b,	R))	 :=	 F	 	 	 if	a	≠	b
equal(cons(a,	L),	cons(b,	R))	 :=	 equal(L,	R)	 if	a	=	b

• Checks that the values in the list are all the same
– this is a definition, so we can only check it on examples…

1 2 1 3 2 3

=	F



Example: List Equality

• Can define equality on List type this way:

equal(nil,	nil)		 	 	 	 :=	 T
equal(nil,	cons(b,	R))	 	 	 :=	 F	 	 	
equal(cons(a,	L),	nil)	 	 	 :=	 F
equal(cons(a,	L),	cons(b,	R))	 :=	 F	 	 	 if	a	≠	b
equal(cons(a,	L),	cons(b,	R))	 :=	 equal(L,	R)	 if	a	=	b

• Has all three required properties
– how would we prove this holds for any list? induction



Recall: Subtypes of Concrete Types

• We initially defined types as sets

• In math, a subtype can be thought of as a subset
– e.g., the even integers are a subtype of ℤ
– e.g., the numbers {1, 2, 3, 4, 5, 6} are a subtype of ℤ
– likewise, a superset would be a supertype

• Any even integer “is an” integer
– “is a” is often (but not always) good intuition for subtypes



Recall: Subtypes of Abstract Types

• Subtypes are substitutable for supertype
– this is the “Liskov substitution principle”
– due to Barbra Liskov

• For ADTs, we use this as our definition of subtype

• When is ADT B substitutable for A?

1. B must provide all the methods of A
If A has a method “f”, then B must have a method called “f”

2. B’s corresponding method spec must be stronger than A’s
must accept all the inputs that A’s does
must also promise everything in A’s postcondition



Example: Duration Again

// Represents an amount of time measured in seconds
class Duration {

  // RI: 0 <= sec < 60
  // AF: obj = 60 * this.min + this.sec
  readonly min: number;
  readonly sec: number;

  equal = (d: Duration): boolean => {
    return this.min === d.min && this.sec === d.sec;
  };

  …

– defines Duration as an ADT instead
getMinutes and getSeconds methods not shown
equal still makes sense, just as before



Example: NanoDuration

• Suppose a subclass also measures nanoseconds

class NanoDuration extends Duration {

  // min: number (inherited)
  // sec: number (inherited)
  readonly nano: number;

  …

• How should we define equal?
– remember that it takes an argument of type Duration

we cannot accept fewer arguments



Example: NanoDuration

class NanoDuration extends Duration {

  // min: number (inherited)
  // sec: number (inherited)
  readonly nano: number;

  equal = (d: Duration): boolean => {
    if (d instanceof NanoDuration) {
      return this.min === d.min &&
             this.sec === d.sec &&
             this.nano === d.nano;
    } else {
      return false;
    }
  };

– does this have the three required properties?

No! It lacks symmetry

Must take Duration
argument to be a subtype



Example: NanoDuration

const d = new Duration(2, 10);
const n = new NanoDuration(2, 10, 300);

console.log(n.equal(d));  

console.log(d.equal(n));  

– NanoDuration is only equal to other NanoDurations

– Duration can be equal to a NanoDuration
if they have the same minutes and seconds

// false

// true!



Example: NanoDuration

class NanoDuration extends Duration {

  // min (inherited)
  // sec (inherited)
  readonly nano: number;

  equal = (d: Duration): boolean => {
    if (d instanceof NanoDuration) {
      return this.min === d.min &&
             this.sec === d.sec &&
             this.nano === d.nano;
    } else {
      return this.min == d.min && this.sec == d.sec;
    }
  };

– fixes symmetry! all good now?

No! It lacks transitivity



Example: NanoDuration

const n1 = new NanoDuration(2, 10, 300);
const d = new Duration(2, 10);
const n2 = new NanoDuration(2, 10, 400);

console.log(n1.equal(d));
console.log(d.equal(n2));

console.log(n1.equal(n2));

– transitivity requires n1 to equal n2 (but it doesn’t)

// true

// true

// false!



Subclasses and Equals Don’t Always Mix

• No good solution to this problem!
– inherent tension between subtyping and equality

subtyping wants subclasses to behave the same
equality wants to treat them differently (using extra information)

• This is a general problem for “binary operations”
– equality is just one example

• Real issue may be that NanoDuration isn’t a subtype
– subclass does not mean subtype
– (would have seen this if we documented the ADT properly)



Example: NanoDuration Again

• Suppose a subclass also measures nanoseconds

// Represents an amount of time in nanoseconds
class NanoDuration extends Duration {

  // RI: 0 <= sec < 60 and 0 <= nano < 10000
  // AF: obj = 60,000,000 * this.min +
  //           1,000,000 * this.sec +
  //           this.nano
  readonly nano: number;

}

• Abstract states of the two types are different
– time in seconds vs nanoseconds
– abstract states of subtypes would need to be subtypes



Constructors



Public Constructors

• Most Java classes have public constructors
– e.g., create an ArrayList with “new ArrayList<String>()”

• For our ADTs, we didn’t do this
– class was hidden (not exported)
– we exported a “factory function” that used the constructor

e.g., makeSortedNumberSet

– this was not accidental…

• Constructors have undesirable properties
– surprisingly error-prone
– several important limitations



Recall: Tight Coupling (Example 3)

class WorkList {
  // RI: len(names) = len(times) and total = sum(times)
  protected ArrayList<String> names;
  protected ArrayList<Integer> times;
  protected int total;

  public addWork(Job job) {
    int time = job.getTime();  // just one call
    total += time;
    addToLists(job.getName(), time);

  }

}

RI is not true in method call!



Method Calls from Constructors

• Any method call from a constructor is dangerous!

• Almost always calling with RI false
– usually, the RI does not hold until all fields are assigned

typically, that is the last line of the constructor

– hence, any methods are called with the RI still false

• Asking for trouble!
– method needs to know that some parts of RI may be false
– eventually, someone changing code will mess this up
– better to avoid method calls in the constructor



Limitations of Constructors

• Constructor is called after the object is created
– can’t decide, in the constructor, not to create it

• Limitations of constructors

1. Cannot return an existing object

2. Cannot return a different class

3. Does not have a name!



Singleton

• Factory functions can return an existing object

• Common case: there is only one instance!
– factory function can avoid creating new objects each time
– called the “singleton” design pattern

• Example from HW5…



Example: Singleton in HW5

// @returns ColorList containing all known colors
export const makeSimpleColorList = (): ColorList => {
  return new SimpleColorList(COLORS);
}

– every object returned is the same
– no need to make more than one

const simpleColorList = new SimpleColorList(COLORS);

// @returns ColorList containing all known colors
export const makeSimpleColorList = (): ColorList => {
  return simpleColorList;
}

Note: only allowed because SimpleColorList is immutable



Returning a Subtype

• Factory functions can return a subtype
– declared to return A but returns subtype B instead
– allowed since every B is an A

• Example:
// @returns an empty NumberSet that can be used to
//     store numbers between min and max (inclusive)
const makeNumberSet = (min: number, max: number): NumberSet => {
  if (0 <= min && max <= 100) {
    return makeArrayNumberSet();  // only supports small sets
  } else {
    return makeSortedNumberSet(); // use a tree instead
  }

}



Multiple Constructors

• Java classes allow multiple constructors

class HashMap {
  public HashMap() { … }  // initial capacity of 16
  public HashMap(int initialCapacity) { … }
}

• TypeScript classes do not, but
you can fake it with optional arguments

class HashMap {
  constructor(initialCapacity?: number) { ... }
}



Constructors Have No Name

• Do not get to name constructors
– in Java, same name as the class
– in TypeScript, called “constructor”

• Names are useful

1. Let you distinguish between different cases
– use names to distinguish cases that otherwise look the same

2. Let you explain what it does
– the only thing you know the client will read!



Example: Distinguishing Constructors

• JavaScript’s Array has multiple constructors

new Array()          // creates []

new Array(a1, …, aN) // creates [a1, …, aN]

new Array(2)         // creates [undefined, undefined]

– what does “new Array(a1)” return when a1 is a number?
– how to make a 1-element array containing just a1

const A = new Array(1);
A[0] = a1;

– don’t have a name to distinguish these cases!



Example: Distinguishing Constructors

• Factory Functions have names
– allow us to distinguish these cases

// @returns []
const makeEmptyArray = (): Array => { … };

// @returns A with A.length = len and
//     A[j] = undefined for any 0 <= j < len
const makeArray = (len: number): Array => { … };

// @returns [args[0], …, args[N-1]]
const makeArrayContaining = (...): Array => { … };



Example: Distinguishing Constructors

• Factory Functions have names
– allow us to distinguish these cases

// @returns []
const makeEmptyArray = (): Array => { … };

// @returns A with A.length = len and
//     A[j] = undefined for any 0 <= j < len
const makeArray = (len: number): Array => { … };

// @returns A with A.length = len and
//     A[j] = val for any 0 <= j < len
const makeFilledArray =
    (len: number, val: number): Array => { … };

Be very, very careful…
Type checker won’t notice if client mixes these up!



Argument Order Bugs

• Some famous bugs due to mixing up argument order!

• If you program long enough, you will see this one
– … and just about every other bug



Use Records to Force Call-By-Name

• Can use a record to make clients type names

// @returns A with A.length = len and
//     A[j] = val for any 0 <= j < len
const makeFilledArray =
    (desc: {len: number, value: number}): Array

– takes one argument, not two
– client writes “makeFilledArray({len: 3, value: 0})”

• Think about mistakes clients might make
– be paranoid when debugging will be painful



More Design Patterns



Recall: Design Patterns

• Introduced in the book of that name
– written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides

– worked in C++ and SmallTalk

• Found that they independently developed
many of the same solutions to recurring problems
– wrote a book about them
– required at least three real-world uses to be included

• Many are solutions to problems with OO languages
– authors worked in C++ and SmallTalk



Parts of a Design Patterns

Each pattern in the book includes

•  Problem to be solved

•  Description of the solution

•  Name of the pattern



Java Example: Iterator

• Java Collections use the Iterator Design Pattern
– enumerate a collection while hiding data structure details
– return another ADT that outputs the items

that object knows how to walk through the data structure
operations for retrieving the current item and moving on to the next one

• Clever idea that is now used everywhere
– I remember when C++ introduced iterators
– huge improvement over code we were writing before



Categories of Design Patterns

The book has three categories of patterns

•  Creational: factory function, factory object,
     builder, prototype, singleton, …

•  Structural: adapter, bridge, composite, decorator,
     façade, flyweight, proxy

•  Behavioral: command, interpreter, iterator, mediator,
     observer, state, strategy, visitor, …

– we will not cover all, just some highlights



Categories of Design Patterns

The book has three categories of patterns

•  Creational: factory function, factory object,
     builder, prototype, singleton, …

•  Structural: adapter, bridge, composite, decorator,
     façade, flyweight, proxy

•  Behavioral: command, interpreter, iterator, mediator,
     observer, state, strategy, visitor, …

–  green = mentioned already



Creational Patterns

• One third of the patterns deal with object creation

• We saw why last time: constructors are terrible
– surprisingly error-prone
– several important limitations

1. Cannot return an existing object
2. Cannot return a different class
3. Does not have a name!

• Already saw factory functions and singleton
– yet we still need more!



Creational Pattern: Builder

• Object that helps with creation of another object
– constructor / factory requires you to give info all at once
– builder lets you describe what you want bit by bit

• Java Example: StringBuilder

StringBuilder buf = new StringBuilder();
buf.append(“Total distance: “);
buf.append(distance);

buf.append(“ meters.”);

return buf.toString();

– each call adds more text / number to the final string
– we can’t do this with strings because strings are immutable



Creational Pattern: Builder

• Object that helps with creation of another object
– constructor / factory requires you to give info all at once
– builder lets you describe what you want bit by bit

• Good pairing: mutable Builder for an immutable type
– must avoid aliasing with the mutable builder

e.g., never use it as a key in a BST or Map

– immutable object can be shared arbitrarily
no worries about aliasing

– only need to be extra careful with the mutable part



Creational Pattern: Builder

•  Builder is often written like this:

class FooBuilder {
  …

  public FooBuilder setX(int x) {
    this.x = x;
    return this;
  }
  …

  public Foo build() { … }
}

– can then use them like this

Foo f = new FooBuilder().setX(1).setY(2).build();

avoids worries about argument order



Recall: Argument Order Bugs

// @returns A with A.length = len and
//     A[j] = val for any 0 <= j < len
const makeFilledArray =
    (len: number, val: number): Array => { … };

• Some famous bugs due to mixing up argument order!

• If you program long enough, you will see this one

• Can fix with a record argument or a Builder
– Java does not have record types, so we need a builder

Be very, very careful…
Type checker won’t notice if client mixes these up!



Argument Builder

// Returns an array with length & value given in args.
public Integer[] makeFilledArray(args: Args) { … }

class Args {
  public int length;
  public int value;
}

Args args = new Args();
args.length = 10;
args.value = 5;

… = makeFilledArray(args);

– code using the function is now more verbose…
can make this easier by giving them a Builder



Argument Builder

// Returns an array with length & value given in args.
public Integer[] makeFilledArray(args: Args) { … }

class ArgsBuilder {
  …
  public ArgsBuilder setLength(int length) {
    this.length = length;
    return this;
  }

  …
  public Args toArgs() { … }
}

… = makeFilledArray(new ArgsBuilder()
    .setLength(10).setValue(5).toArgs());



Categories of Design Patterns

The book has three categories of patterns

•  Creational: factory function, factory object,
     builder, prototype, singleton, …

•  Structural: adapter, bridge, composite, decorator,
     façade, flyweight, proxy

•  Behavioral: command, interpreter, iterator, mediator,
     observer, state, strategy, visitor, …

–  green = mentioned already



Structural Pattern: Adapter

• Mentioned this one in lecture 3

• In Java, these two classes are not interoperable:

interface Duration {
  int getMinutes();
  int getSeconds();
}

interface AmountOfTime {
  int getMinutes();
  int getSeconds();
}

– cannot pass one where the other is expected



Structural Pattern: Adapter

• Mentioned this one in lecture 3

• Get around this by creating an adapter

class DurationAdapter implements AmountOfTime {
  private Duration d;

  public DurationAdapter(Duration d) {
    this.d = d;
  }

  int getMinutes() { return d.getMinutes(); }
  int getSeconds() { return d.getSeconds(); }
}

– makes a Duration into an AmountOfTime



Structural Pattern: Adapter

• Adapters are often needed with nominal typing
– design pattern working around a language issue

• With structural typing, these two interoperate:

type Duration = {min: number, sec: number};

type AmountOfTime = {min: number, sec: number};

– can pass either where the other is expected
– not an issue of concrete vs abstract

still interoperable if we have getMinutes and getSeconds methods



Categories of Design Patterns

The book has three categories of patterns

•  Creational: factory function, factory object,
     builder, prototype, singleton, …

•  Structural: adapter, bridge, composite, decorator,
     façade, flyweight, proxy

•  Behavioral: command, interpreter, iterator, mediator,
     observer, state, strategy, visitor, …

–  green = mentioned already



Trees

• Trees are inductive data types
– anything with a constructor that has 2+ recursive arguments

HW8 tree (Square) has 4 recursive arguments

• They arise frequently in practice
–  HTML: used to describe UI
–  JSON: used for client/server communication
–  parse trees: represent code



Parse Tree

• Output of parsing is a tree
– encodes the order of operations

• Example: parse of “x = a * 3 + b / 4”

x +

=

*

a3

/

4b



Parse Tree

• Output of parsing is a tree
– records the order of operations

• Parse tree is an inductive data type

type	Expression		:=		variable(name:	𝕊*)
	 	 	 					|			constant(val	:	ℤ)
	 	 	 					|			plus(left	:	Expr,	right	:	Expr)
	 	 	 					|			times(left	:	Expr,	right	:	Expr)
	 	 	 					|			divide(left	:	Expr,	right	:	Expr)
	 	 	 					|			assign(name	:	𝕊*,	value	:	Expr)

– parse of “x = a * b + c / d”

assign(“x”,	plus(times(constant(3),	variable(“a”)),
																												divide(variable(“b”),	constant(4)))



Operations on Parse Trees

• Compilers perform various operations on expressions
– type check
– evaluate
– code generation

• Each operation defined for each type of expression

Type of Expr

Variable Plus Times

Operation
type check

evaluate

code gen



Operations on Parse Trees

• Need to write code for each box
– each case is slightly different

• Two reasonable ways to organize into files
– file per expression type:  Interpreter pattern
– file per operation:   Procedural pattern

Type of Expr

Variable Plus Times

Operation
type check

evaluate

code gen



Interpreter Pattern

interface Expr {
  typeCheck = (c: Context) => Type,
  evaluate = (c: Context) => number | undefined,
  generate = (c: Context) => List<Instruction>

}

class Variable implements Expr {
  name: string;
  typeCheck = (c: Context): Type => {

    return c.get(this.name);
  }
  evaluate = (c: Context): number | undefined => {

    return undefined;
  }

  …
}

• Each type of expression is a class



Interpreter Pattern

interface Expr {
  typeCheck = (c: Context) => Type,
  evaluate = (c: Context) => number | undefined,
  generate = (c: Context) => List<Instruction>

}

• Easy to add new types of expression
– new subtype of Expr
– goes into its own file

• Hard to add new operations
– new method of Expr
– changes every file



Procedural Pattern

interface Procedure<R> {
  processVar = (v: Variable, c: Context) => R,
  processConst = (n: Constant, c: Context) => R,
  …

}

class TypeChecker implements Procedure<boolean> {
  processVar = (v: Variable, c: Context): boolean => {
    return c.has(v.name);
  }

  processConst = (n: Constant, c: Context): boolean => {
    return true;
  }
  …

}

• Each type of procedure is a class
–  one method for each type of expression



Procedural Pattern

interface Procedure<R> {
  processVar = (v: Variable, c: Context) => R,
  processConst = (n: Constant, c: Context) => R,
  …

}

• Easy to add new types of operations
– new subtype of Procedure
– goes into its own file

• Hard to add new expressions
– new method of Procedure
– changes every file



Interpreter vs Procedural Pattern

• Both patterns are reasonable
– best choice is problem-dependent

for a compiler, I prefer the procedural pattern

• But there is a problem with Procedural in OO
– suppose e is an Expr but we don’t know which one
– how do we call the right method?

could be processVar, processConst, processPlus, …



Problems with Procedural Pattern in OO

const process = (p: Procedure, e: Expr, c: Context) => {
  if (e instanceof Variable) {
    p.processVar(e, c);
  } else if (e instanceof Constant) {
    p.processConst(e, c);

  } else if (e instanceof Plus) {
    p.processPlus(e, c);

  } else …
}

• Not great, Bob!
– code is slow
– will call it enough times that this will matter

• There is a solution, but… buckle up!



Dynamic Dispatch (good case in Java)

interface Expr {
  boolean typeCheck(Context c);
}

class Variable implements Expr {
  public boolean typeCheck(Context c) { … }
}

class Constant implements Expr {
  public boolean typeCheck(Context c) { … } 
}

• Java / TypeScript (or any OO) makes this case easy

Expr e = …

e.typeCheck(c);         // e could be any Expr

– automatically “dispatches” to the right method



Dynamic Dispatch (bad case in Java)

interface Procedure<R> {
  R process(Variable v, Context c);
  R process(Constant n, Context c);
  …

}

class TypeChecker implements Procedure<Boolean> {
  Boolean process(Variable v, Context c) { … }
  Boolean process(Constant c, Context c) { … }

  …

}

• This is impossible in Java:
TypeChecker t = new TypeChecker();
Expr e = …

t.process(e, c);         // e could be any Expr

overloading



Dynamic Dispatch (bad case in Java)

• This is impossible in Java:

TypeChecker t = new TypeChecker();
Expr e = …

t.process(e, c);         // e could be any Expr

• Need to put “e” before “.” to get dynamic dispatch
– here’s how we do that… (gulp)



Double Dispatch

interface Procedure<R> {
  R process(Variable v, Context c);
  R process(Constant n, Context c);
  …

}

interface Expr {
  R perform(Procedure<R> p, Context c);
}

class Variable implements Expr {
  public R perform(Procedure<R> p, Context c) {
    p.process(this, c);
  }
}

class Constant implements Expr {
  public R perform(Procedure<R> p, Context c) {
    p.process(this, c);
  }

}

calls process(Variable, Context)

calls process(Constant, Context)



Double Dispatch

interface Procedure<R> {
  R process(Variable v, Context c);
  R process(Constant n, Context c);
  …

}

interface Expr {
  R perform(Procedure<R> p, Context c);

}

• We can now do this
Process p = new TypeChecker();
Expr e = …

e.perform(p, c);         // e could be any Expr

– calls Expr.perform, which calls TypeChecker.process
– two function calls is still faster than all the “if”s



Double Dispatch

• This works, but... why so hard?

• Other languages just let you do this:

Process p = new TypeChecker();
Expr e = …

p.process(e, c);         // e could be any Expr

– or even more general “multiple dispatch” cases
– use a better language?



Traversing Trees

• Same idea is used to traverse trees

type	Expression		:=		variable(name:	𝕊*)
	 	 	 					|			constant(val	:	ℤ)
	 	 	 					|			plus(left	:	Expr,	right	:	Expr)
	 	 	 					|			times(left	:	Expr,	right	:	Expr)
	 	 	 					|			divide(left	:	Expr,	right	:	Expr)
	 	 	 					|			assign(name	:	𝕊*,	value	:	Expr)

– parse of “x = 3 * a + b / 4”

assign(“x”,	plus(times(constant(3),	variable(“a”)),
																												divide(variable(“b”),	constant(4)))

– would like to process (“visit”) each node in this tree



Visitor Pattern

interface ExprVisitor {
  visitVariable = (v: Variable) => void,
  visitConstant = (n: Constant) => void,
  visitPlus = (p: Plus) => void,
  …

}

interface Expr {
  // Visits this node and all its children.
  accept = (v: ExprVisitor) => void
}

class Variable implements Expr {
  name: string;
  accept = (v: ExprVisitor): void => {
    v.visitVariable(this);
  }
}

…



Visitor Pattern

• Combines double dispatch with tree traversal

class Plus implements Expr {
  left: Expr;
  right: Expr;

  accept = (v: ExprVisitor): void => {
    left.accept(v);

    right.accept(v);
    v.visitVariable(this);
  }

}

– traverses children before visiting parent



Visitor Pattern

p.accept(v)

   t.accept(v)
     h.accept(v)

       v.visitConstant(h)
     a.accept(v)

       v.visitVariable(a)
     v.visitTimes(t)

   d.accept(v)

     …
     v.visitDivide(f)

   v.visitPlus(p)
+
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