
Full Stack Apps
James Wilcox & Kevin Zatloukal

CSE 331

Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Design on the Client Side

• Component state is tightly coupled with UI on screen
– must store state to render exactly what you see

• Design the client by thinking about what you see
– what components do you need to show that UI

different “pages” should be different components

– what information do you need to draw each component
must be provided in props or stored in state

Last time: Auction pages

• Auction site has three different “pages”

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Submit

Current Bid: $250

Name

Bid

Fred

251

New Auction
Name Bob

Item Table Lamp

…

Example: Auction Site

• Clicking on New allows the user to start a new auction
– user provides the full details of the item to auction

New Auction

Start

Name

Min Bid

Bob

100

click Start to start auction

Ends In 100

Item Table Lamp

Description Beautiful vintage lamp. Perfect for
any room in your home. 20” x 12”

minutes

Auction Client: NewAuction.tsx

– Figured out the props before. This HTML:

return <NewAuction onStartClick={this.doStartClick}
 onBackClick={this.doBackClick}/>;

means these props:

type NewAuctionProps = {
 onBackClick: () => void, // when user clicks “Back”
 onStartClick: (name: string, seller: string, …) => void
};

Auction Client: NewAuction.tsx

– figured out the props before
– what state should we store?

New Auction

Start

Seller

Min Bid

Bob

100

Ends In 100

Name Table Lamp

Description Beautiful vintage lamp. Perfect for
any room in your home. 20” x 12”

minutes

type NewAuctionState = {
 seller: string,
 name: string,
 description: string,
 minBid: string,
 minutes: string
};

Note that user input is a string!
(We will need to check validity.)

Auction Client: NewAuction.tsx

– state must mirror input on the screen:

render = (): JSX.Element => {
 …

 <label htmlFor=“seller”>Seller:</label>

 <input id=“seller” type=“text” value={this.state.seller}
 onChange={this.onSellerChange}/>
 …
}

onSellerChange = (evt: ChangeEvent<HTMLInputElement>) => {

 this.setState({seller: evt.target.value});
};

type NewAuctionState = {
 seller: string,
 name: string,
 description: string,
 minutes: string,
 minBid: string
};

Auction Client: NewAuction.tsx

– state must mirror input on the screen:

render = (): JSX.Element => {
 …

 <label htmlFor=“minutes”>Minutes:</label>

 <input id=“minutes” type=“number”
 value={this.state.minutes}
 onChange={this.onMinutesChange}/>
 …

}

onMinutesChange = (evt: ChangeEvent<HTMLInputElement>) => {

 this.setState({minutes: evt.target.value});
}; type NewAuctionState = {

 seller: string,
 name: string,
 description: string,
 minutes: string,
 minBid: string
};

type=“number” prevents text that isn’t a number
but “” is still allowed

Auction Client: NewAuction.tsx

– need to validate the input before creating an auction
– show an error message

New Auction

Start

Name

Min Bid 100

Ends In 100

Item Table Lamp

Description Beautiful vintage lamp. Perfect for
any room in your home. 20” x 12”

minutes

type NewAuctionState = {
 seller: string,
 name: string,
 description: string,
 minutes: string,
 minBid: string,
 error: string
};

Error: a required field is missing

Auction Client: NewAuction.tsx

– state records whether an error is showing

render = (): JSX.Element => {
 …

 {this.renderError()}
 …

}

renderError = (): JSX.Element => {

 if (this.state.error === “”) {
 return <div></div>; // show nothing
 } else {
 return <div>Error: {this.state.error}</div>;
 }
};

Auction Client: NewAuction.tsx

– update the state to show an error

doStartClick = (): void => {
 if (this.state.seller.trim().length === 0) {
 // re-render with an error message
 this.setState({error: “seller name is missing”});
 return;
 }
 …

}

onSellerChange = (evt: ChangeEvent<HTMLInputElement>) => {

 this.setState({seller: evt.target.value,
 error: “”}); // remove error message
};

Auction Client: NewAuction.tsx

– update the state to show an error

doStartClick = (): void => {
 // Check that all fields were provided.
 …

 // Check that minutes is a positive integer.
 const minutes = parseFloat(this.state.minutes);
 if (isNaN(minutes) || minutes < 1 ||
 Math.floor(minutes) !== minutes) {

 this.setState(
 {error: “minutes is not a positive integer”});

 return;
 }
 …
};

Auction Client: NewAuction.tsx

– If all checks pass, we can create the auction

doStartClick = (): void => {
 // Check that all fields were provided.
 …

 // Check that minutes & minBid are a positive integers.
 const minutes: number = …;
 …
 // Can now use callback to start the auction...
 this.props.onStartClick(this.state.name, this.state.seller,
 this.state.description, minutes, minBid);
};

– What data goes in the auction?
State of NewAuction is for what it needs to draw.
Auction created is for AuctionDetails and AuctionList to draw.

Auction Client: NewAuction.tsx

– Look at other UI to see what data Auction needs

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New

type Auction = {
 seller: string,
 name: string,
 description: string,
 endTime: number, // need to know when auction ends
 maxBid: number, // need to know current max bid
 maxBidder: string, // need to know who is winning
};

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Final Bid: $250

Won By: Alice

Sold By: Bob

Auction Client: App.tsx

doStartClick = (name: string, seller: string, desc: string,
 minutes: number, minBid: number): void => {

 // Ends this many minutes from now (convert to ms)
 const endTime = Date.now() + minutes * 60 * 1000;

 // Seller keeps it if no one bids min or higher
 const maxBid = minBid – 1;
 const maxBidder = this.state.seller;

 const auction = {
 seller: this.state.seller,
 name: this.state.name,
 description: this.state.description,
 endTime, maxBid, maxBidder };

 const auctions = this.state.auctions.concat([auction])
 this.setState({page: “list”, auctions: auctions});
};

Example: Auction Site

• Clicking on an item shows the full details
– allows user to bid

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Submit

Show an error if the user:
• does not enter a name
• enters a non-number bid
• enters a bid smaller than the current bid

Current Bid: $250

Name

Bid

Fred

251 click Submit to bid

Example: Auction Site

• Clicking on an item shows the full details
– allows user to bid

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Don’t let users bid if the auction is over.

Instead, show who won the auction.

Final Bid: $250

Won By: Alice

Auction Client: AuctionDetails.tsx

– Figured out the props before. This HTML:

return <AuctionDetails auction={auction}
 onBidClick={this.doBidClick}
 onBackClick={this.doBackClick}/>;

means these props:

type DetailsProps = {
 auction: Auction,

 // update the highest bid to this
 onBidClick: (bidder: string, amount: number) => void,
 onBackClick: () => void
};

– How do we figure out the state?
look at the UI

Auction Client: AuctionDetails.tsx

– Needs to know the current time
if it is past auction end time, show left; otherwise, show right

type DetailsState = {
 now: number,
 bidder: string,
 amount: string,
 error: string
};

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Bid

Current Bid: $250

Name

Bid

Fred

251 Back

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Final Bid: $250

Won By: Alice

Auction Client: AuctionDetails.tsx

– use the current time to decide how to draw

render = (): JSX.Element => {

 const auction = this.props.auction;
 if (auction.endTime <= this.state.now) {
 return this.renderCompleted();
 } else {
 return this.renderOngoing();
 }

};

– add a “Refresh” button to update UI to current time

// User clicked the Refresh button.
doRefreshClick = (_evt: MouseEvent<HTMLButtonElement>) => {

 this.setState({now: Date.now(), error: ""});
};

Recall: Auction Client: App.tsx

– the App component stores the auction list
easy to pass it down to subcomponents in their props

– subcomponents cannot mutate the auction list!
they must invoke callbacks to have the App update the auction list

doBidClick =
 (index: number, bidder: string, amount: number) => {
 const oldVal = this.state.auctions[index];
 const newVal = { … // oldVal except for:
 maxBid: amount, maxBidder: bidder};

 const auctions = this.state.auctions.slice(0, index)
 .concat([newVal])

 .concat(this.state.auctions.slice(index+1));
 this.setState({auctions: auctions});
};

Note: there is subtle issue here we will discuss later…

Recall: Auction Client: App.tsx

– render shows the appropriate UI

render = (): JSX.Element => {
 if (this.state.page === “list”) {
 return <AuctionList auctions={this.state.auctions}
 onNewClick={this.doNewClick}
 onAuctionClick={this.doAuctionClick}/>;

 } else if (this.state.page === “new”) {
 return <NewAuction onStartClick={this.doStartClick}
 onBackClick={this.doBackClick}/>;

 } else { // kind: “details”
 const index = this.state.page.index;
 const auction = this.state.auctions[index];
 return <AuctionDetails auction={auction} // newVal replaced oldVal
 onBidClick={(n, a) => this.doBidClick(index, n, a)}
 onBackClick={this.doBackClick}/>;

 }

}; Re-rendering AuctionDetails with different auction

Lifecycle Events

• Warning: React doesn’t unmount when props change
– instead, it re-renders and calls componentDidUpdate

just as state can change, props can change

– you can detect a props change there

componentDidUpdate = (prevProps: HiProps): void => {
 if (this.props.field !== prevProps.field) {
 … // our props were changed!
 }
};

– better to avoid this if possible
good setup for painful debugging

Auction Client: AuctionDetails.tsx

– Often arises when props used to set initial state values
– Here, we initialize bid amount to be valid

constructor(props: DetailsProps) {
 super(props);

 const amount = this.props.auction.maxBid + 1;
 this.state = {now: Date.now(),
 bidder: "", amount: ’’ + amount, error: ""};

}

– When auction changes, want to update state to match
happens each time we call onBidClick to update the auction!
in that case, old bid amount is no longer valid

Auction Client: AuctionDetails.tsx

– When auction changes, update state to match:

componentDidUpdate = (prevProps: DetailsProps): void => {
 if (prevProps.auction !== this.props.auction) {
 const amount = parseFloat(this.state.amount);
 const minBid = this.props.auction.maxBid + 1;
 if (!isNaN(amount) && amount < minBid) {
 this.setState({amount: ’’ + minBid});
 }

 }
};

– Fixes a stale amount to be a legal value again
(must be careful changing text the user typed, but this case is okay.)

– (Note: code also updates “now” and “error” here.)

Auction Client: AuctionList.tsx

– Figured out the props before. This HTML:

return <AuctionList auctions={this.state.auctions}
 onNewClick={this.doNewClick}
 onAuctionClick={this.doAuctionClick}/>;

means these props:

type ListProps = {
 auctions: ReadonlyArray<Auction>,

 onNewClick: () => void,
 onAuctionClick: (index: number) => void // clicked on one
};

– How do we figure out the state?
look at the UI

Example: Auction Site

• Initial page shows user a list of auctions
– can also add their own

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

can click on item name

New can click on New

Auction Client: AuctionList.tsx

– Needs to know the current time for text on right
if it is past auction end time, show left; otherwise, show right

type ListState = {
 now: number
};

– Could replace Refresh with a timer
timer calls refresh every 10 seconds, say

– Nothing else new in AuctionList.tsx

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New Refresh

Moving Data to the Server

Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Designing the Server

• Decide what state you want to be permanent
– e.g., items on the To-Do list

• Decide what operations the client needs
– e.g., retrieve the list, add to the list, remove from list

look at the client code to see how the list changes
each way of changing the list becomes an operation

– only provide those operations
can always add more operations later

Writing the Server

• Full-stack apps introduce new ways of failing
– can fail in the client due to a bug in the server
– can fail in the server due to a bug in the client

• Debugging a full-stack app is much harder
– requires understanding client, server, & interactions
– will take more time…

• Make sure you unit test the server thoroughly
– if client & server are correct, failures are due to interaction

e.g., misunderstanding about what to data to send or where to send it

– limits the scope of the search

Example: To-Do List Server

Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Recall: Client-Server Interaction

• Clients need to talk to server & update UI in response

GET /list

updated to-do list

our server

Components give us the ability to update the UI
when we get new data from the server (an event)

How do we get new data from the server?

Making HTTP Requests

• Send & receive data from the server with “fetch”

fetch(“/list”)
 .then(this.doListResp)
 .catch(() => this.doListError(“failed to connect”))

– then handler is called if the request can be made
– catch handler is called if it cannot be

only if it could not connect to the server at all
status 400 still calls then handler

– catch is also called if then handler throws an exception

Making HTTP Requests

• Send & receive data from the server with “fetch”

fetch(“/list”)
 .then(this.doListResp)
 .catch(() => this.doListError(“failed to connect”))

• Fetch returns a “promise” object
– has .then & .catch methods
– both methods return the object again
– above is equivalent to:

const p = fetch(“/list”);
p.then(this.doListResp);
p.catch(() => this.doListError(“failed to connect”));

Making HTTP Requests

• Send & receive data from the server with “fetch”

const url = “/list?” +
 “category=” + encodeURIComponent(category);
fetch(url)
 .then(this.doListResp)
 .catch(() => this.doListError(“failed to connect”))

• All query parameter values are strings
• Some characters are not allowed in URLs

– the encodeURIComponent function converts to legal chars
– server will automatically decode these (in req.query)

in example above, req.query.name will be “laundry”

Making HTTP Requests

• Still need to check for a 200 status code

doListResp = (res: Response): void => {
 if (res.status === 200) {
 console.log(“it worked!”);

 } else {
 this.doListError(`bad status ${res.status}`);
 }

};

doListError = (msg: string) => {
 console.log(“fetch of /list failed: ${msg}”);

};

– (often need to tell users about errors with some UI…)

Handling HTTP Responses

• Response has methods to ask for response data
– our doListResp called once browser has status code
– may be a while before it has all response data (could be GBs)

• With our conventions, status code indicates data type:
– with 200 status code, use res.json() to get record

we always send records for normal responses

– with 400 status code, use res.text() to get error message
we always send strings for error responses

• These methods return a promise of response data
– use .then(..) to add a handler that is called with the data
– handler .catch(..) called if it fails to parse

Making HTTP Requests

doListResp = (res: Response): void => {
 if (res.status === 200) {
 res.json().then(this.doListJson);
 .catch(() => this.doListError(“not JSON”);
 } …
 …

};

• Second promise can also fail
– e.g., fails to parse as valid JSON, fails to download

• Important to catch every error
– painful debugging if an error occurs and you don’t see it!

Making HTTP Requests

doListResp = (res: Response): void => {
 if (res.status === 200) {
 res.json().then(this.doListJson);
 .catch(() => this.doListError(“not JSON”);
 } else if (res.status === 400) {
 res.text().then(this.doListError);
 .catch(() => this.doListError(“not text”);
 } else {
 this.doListError(`bad status: ${res.status}`);
 }
};

• We know 400 response comes with an error message
– could also be large, so res.text() also returns a promise

Fetch Requests Are Complicated

• Four different methods involved in each fetch:

1. method that makes the fetch
2. handler for fetch Response
3. handler for fetched JSON
4. handler for errors

fetch status code

response data

error messagedoListResp

doListError

doListJsonconnect

200

400

Fetch Requests Are Complicated

• Four different methods involved in each fetch:

1. method that makes the fetch
2. handler for fetch Response e.g., doListResp
3. handler for fetched JSON e.g., doListJson
4. handler for errors e.g., doListError

• Three different events involved:
– getting status code, parsing JSON, parsing text
– any of those can fail!

important to make all error cases visible

Recall: HTTP GET vs POST

• When you type in a URL, browser makes “GET” request
– request to read something from the server

• Clients often want to write to the server also
– this is typically done with a “POST” request

ensure writes don’t happen just by normal browsing

• POST requests also send data to the server in body
– GET only sends data via query parameters
– limited to a few kilobytes of data
– POST requests can send arbitrary amounts of data

Making HTTP POST Requests

• Extra parameter to fetch for additional options:

fetch(”/add”, {method: ”POST”})

• Arguments then passed in body as JSON

const args = {name: “laundry”};
fetch(”/add”, {method: ”POST”,
 body: JSON.stringify(args),
 headers: {“Content-Type”: “application/json”}})

 .then(this.doAddResp)
 .catch(() => this.doAddError(“failed to connect”))

– add as many fields as you want in args
– Content-Type tells the server we sent data in JSON format

Example: To-Do List 2.0

Recall: (Old) TodoApp – Add Click

// Called when the user clicks on the button to add the new item.
doAddClick = (_: MouseEvent<HTMLButtonElement>): void => {
 // Ignore the request if the user hasn't entered a name.
 const name = this.state.newName.trim();
 if (name.length == 0)
 return;

 // Cannot mutate this.state.items! Must make a new array.
 const items = this.state.items.concat(
 [{name: name, completed: false}]);

 this.setState({items: items, newName: ""}); // clear input box
};

New TodoApp – Add Click

// Called when the user clicks on the button to add the new item.
doAddClick = (_: MouseEvent<HTMLButtonElement>): void => {
 // Ignore the request if the user hasn't entered a name.
 const name = this.state.newName.trim();
 if (name.length == 0)
 return;

 // Ask the server to add the new item.
 const args = {name: name};
 fetch("/api/add", {

 method: "POST", body: JSON.stringify(args),

 headers: {"Content-Type": "application/json"} })

 .then(this.doAddResp)
 .catch(() => this.doAddError("failed to connect to server"));
};

New TodoApp – Add Response & Error

// Called when the server confirms that the item was added.
doAddResp = (res: Response): void => {
 if (res.status === 200) {
 res.json().then(this.doAddJson)
 .catch(() => this.doAddError(”200 response is not JSON"));
 } else if (res.status === 400) {
 res.text().then(this.doAddError)
 .catch(() => this.doAddError(”400 response is not text"));
 } else {
 this.doAddError(`bad status code ${res.status}`);
 }

};

// Called when we fail trying to add an item
doAddError = (msg: string): void => {
 console.error(`Error fetching /add: ${msg}`);
};

New TodoApp – Add Json

// Called with the JSON response from /api/add
doAddJson = (data: unknown): void => {
 if (!isRecord(data)) {
 console.error("bad data from /add: not a record", data);

 return;
 }

 if (typeof data.name !== 'string') {
 console.error("bad data from /add: name missing / wrong", data);
 return;
 }

 // Now that we know it was added, we can update the UI.
 const items = this.state.items.concat(
 [{name: data.name, completed: false}]);

 this.setState({items: items, newName: ""}); // clear input box
};

Recall: (Old) TodoApp – Item Clicked

// Called when the user checks the box next to an uncompleted item.
// The second parameter is the index of that item in the list.
doItemClick =
 (_: ChangeEvent<HTMLInputElement>, index: number): void => {
 const item = this.state.items[index];

 // Note: we cannot mutate the list. We must create a new one.
 const items = this.state.items.slice(0, index) // 0 .. index-1
 .concat([{name: item.name, completed: true}])
 .concat(this.state.items.slice(index + 1)); // index+1 ..
 this.setState({items: items});

 // Remove the item in 5 seconds…
 setTimeout(() => this.doItemTimeout(index), 5000);
};

New TodoApp – Item Clicked

// Called when the user checks the box next to an uncompleted item.
// The second parameter is the index of that item in the list.
doItemClick =
 (_: ChangeEvent<HTMLInputElement>, index: number): void => {
 const item = this.state.items[index];

 const args = {name: item.name};
 fetch("/api/complete", {
 method: "POST", body: JSON.stringify(args),
 headers: {"Content-Type": "application/json"} })

 .then((res) => this.doCompleteResp(res, index))
 .catch(() => this.doCompleteError("failed to connect"))
};

– passing index as an extra argument
– we’ll need it later…

New TodoApp – Item Clicked

// Called when the server confirms that the item was completed.
doCompleteResp = (res: Response, index: number): void => {
 if (res.status === 200) {
 res.json().then((data) => this.doCompleteJson(data, index))
 .catch(() => this.doCompleteError(”200 response is not JSON"));
 } else if (res.status === 400) {
 res.text().then(this.doCompleteError)
 .catch(() => this.doCompleteError(”400 response is not text"));
 } else {
 this.doCompleteError(`bad status code ${res.status}`);
 }

};

– passing index as an extra argument

New TodoApp – Item Clicked

// Called with the JSON response from /api/complete
doCompleteJson = (data: unknown, index: number): void => {
 if (!isRecord(data)) {
 console.error("bad data from /complete: not a record", data)

 return;
 }
 // Nothing useful in the response itself…

 // Note: we cannot mutate the list. We must create a new one.
 const item = this.state.items[index];
 const items = this.state.items.slice(0, index) // 0 .. index-1
 .concat([{name: item.name, completed: true}])

 .concat(this.state.items.slice(index + 1)); // index+1 ..
 this.setState({items: items});

 // Refresh our list after this item has been removed.
 setTimeout(this.doRefreshTimeout, 5100);
};

New TodoApp – Refresh Timeout

// Called to refresh our list of items from the server.
doRefreshTimeout = (): void => {
 fetch("/api/list").then(this.doListResp)
 .catch(() => this.doListError("failed to connect"));
};

// Called with the response from a request to /api/list
doListResp = (res: Response): void => {
 if (res.status === 200) {
 res.json().then(this.doListJson)
 .catch(() => this.doListError(”200 response is not JSON"));
 } else if (res.status === 400) {
 res.text().then(this.doListError)
 .catch(() => this.doListError(”400 response is not text"));
 } else {
 this.doListError(`bad status code ${res.status}`);
 }
};

Lifecycle Methods

• React also includes events about its “life cycle”
– componentDidMount: UI is now on the screen
– componentDidUpdate: UI was just changed to match render
– componentWillUnmount: UI is about to go away

• Often use “mount” to get initial data from the server
– constructor shouldn’t do that sort of thing

componentDidMount = (): void => {
 fetch(“/api/list”)
 .then(this.doListResp)
 .catch(() => this.doListError(“connect failed”);
};

One More Change

• Don’t have the items initially…

type TodoState = {
 items: Item[] | undefined; // items or undefined if loading
 newName: string; // mirrors text in name-to-add field
};

renderItems = (): JSX.Element => {
 if (this.state.items === undefined) {
 return <p>Loading To-Do list...</p>;
 } else {
 const items = [];
 // … old code to fill in array with one DIV per item …
 return <div>{items}</div>;
 }
};

New TodoApp — Requests

Debugging Client-Server

“Engineers are paid to think and understand.”
— Class slogan #1

Recall: Software Development Process

Idea Generation

Given: a problem description (in English)

Type Checking Reasoning Testing

Debugging

• As cost of debugging increases, must work harder to avoid it
– correctness gets more important as code gets more complex

Client-Server Communication

• Client-server communication can fail in many ways
– almost always requires debugging

• Include all required .catch handlers
– at least log an error message

• Here are steps you can use when
– the client should have made a request
– but you don’t see the expected result afterward
– (practice this in section tomorrow!)

Client-Server Communication

1. Do you see the request in the Network tab?
– the client didn’t make the request

2. Does the request show a 404 status code?
– the URL is wrong (doesn’t match any app.get / app.post) or

the query parameters were not encoded properly

3. Does the request show a 400 status code?
– your server rejected the request as invalid
– look at the body of the response for the error message or

add console.log’s in the server to see what happened
– the request itself is shown in the Network tab

Client-Server Communication

4. Does the request show a 500 status code?
– the server crashed!
– look in the terminal where you started the server for a stack trace

5. Does the request say “pending” forever?
– your server forgot to call res.send to deliver a response

6. Look for an error message in browser Console
– if 1-5 don’t apply, then the client got back a response
– client should print an error message if it doesn’t like the response
– client crashing will show a stack trace

Dynamic Type Checking

New TodoApp – Add Json

doAddJson = (data: unknown): void => {
 … // how do we use data?
};

– type of returned data is unknown
– to be safe, we should write code to check that it looks right

check that the expected fields are present
check that the field values have the right types

– only turn off type checking if you love painful debugging!
otherwise, check types at runtime

Checking Types of Requests & Response

• All our 200 responses are records, so start here

if (!isRecord(data)) {
 console.error(“not a record”, data);
 return; // fail fast and friendly!
}

– the isRecord function is provided for you
– like built-in Array.isArray function

• Would be reasonable to throw an Error instead
– but console.error is probably easier for debugging
– second argument prints out the value of “data”

Checking Types of Requests & Response

• Fields of the record can have any types

if (typeof data.name !== ’string’) {
 console.error(“name is missing or invalid”, data);
 return;
}

if (typeof data.amount !== ‘number’) {
 console.error(“amount is missing or invalid”, data);

 return;
}

– should check each element of an array before you use it!
call Array.isArray and then loop through the elements to check typeof

New TodoApp – Refresh Timeout

// Called with the JSON response from /api/list
doListJson = (data: unknown): void => {
 if (!isRecord(data)) {
 console.error("bad data from /list: not a record", data)

 return;
 }

 const items = parseItems(data.items);
 if (items !== undefined)
 this.setState({items: items});
};

– often useful to move this type checking to helper functions
we will do this (and provide) tree toJson / fromJson in HW8

New TodoApp – parseItems

// Ensure that this is an array of items. Returns it with that type
// or undefined if invalid (after logging an error message).
const parseItems = (val: unknown): Item[] | undefined => {
 if (!Array.isArray(val)) {
 console.error(“not an array”, val);

 return undefined;
 }

 const items: Item[] = [];
 for (const item of val) {
 if (!isRecord(item) || typeof item.name !== 'string’ ||
 typeof item.completed !== 'boolean') {
 console.error(“not an item”, item);
 return undefined;
 } else {
 items.push({name: item.name, completed: item.completed});
 }
 }
 return items;
};

actual code has
3 separate cases

For .. Of

for (const item of val)

• “for .. of” iterates through array elements in order
– ... or the entries of a Map or the values of a Set

entries of a Map are (key, value) pairs

– fine to use this now
– no need to write an invariant for such loops

do X for each Y is simple enough that we can skip the invariant
(do not abuse this)

Use Type Checking to Avoid Debugging

• Work harder to avoid debugging when it’s painful
– mistakes now help you learn where to be extra careful

• Resist the temptation to skip checking types in JSON
– “easy is the path that leads to debugging”

• Query parameters also require checking:

const url = “/list?” +
 “category=” + encodeURIComponent(category);

– converting from a string back to JS data is also parsing
– can be a bug in encoding or parsing

Use Type Checking to Avoid Debugging

• Work harder to avoid debugging when it’s painful
– mistakes now help you learn where to be extra careful

• Be careful of turning off type checking:

 resp.json().then(this.doAddJson)
 …

doAddJson = (data: TodoItem): void => {
 this.setState(
 {items: this.state.items.concat([data])});
};

– promises use “any” instead of “unknown”, so
TypeScript let you do this

imagine this debugging
when you make a mistake

Example: Auctions Server

Recall: Auction UI

• Auction site has three different “pages”

Current Auctions
• Oak Cabinet ends in 10 min
• Red Couch ends in 15 min
• Blue Bicycle

New

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Submit

Current Bid: $250

Name

Bid

Fred

251

New Auction
Name Bob

Item Table Lamp

…

Recall: Auction UI

• Auction site has three different “pages”

• Need four different components:
– Auction List: shows all the auctions (and Add button)
– Auction Details: shows details on the auction (w Bid button)
– New Auction: lets the user describe a new auction
– App: decides which of these pages to show

Recall: Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Writing the Server

• First decide what data to store in the server
– what parts of the UI do we not want to disappear on refresh?

• For the auction app:
– need to keep the auctions: Auction[]
– don’t need to keep other parts

which page we are on
text in any of the text boxes

Writing the Server

• Next decide what read operations we need
– these will become GET requests

• Simplest case is when the client can store all data
– just let the client retrieve all of it
– with lots of data, client would need to query a subset

• For the auctions app:
– /api/list returns all the auctions

Auction Server: routes.ts

// List of all auctions, in order by creation time (only pushed)
const auctions: Auction[] = [];

/**
 * Returns a list of all the auctions, sorted so that the
 * ongoing auctions come first and the completed ones after. …
 */
export const listAuctions =
 (_req: SafeRequest, res: SafeResponse): void => {

 res.send({auctions: auctions});
};

Writing the Server

• Next decide what update operations we need
– these will become POST requests
– what updates do we make to that data in the client?

• For the auctions app:
– look in App.tsx to see how we change auctions

no other component is allowed to modify the auctions array

– we change it in two ways:
1. add a new auction
2. change an auction to have a new highest bidder

Writing the Server

• Next decide what update operations we need
– these will become POST requests
– what updates do we make to that data in the client?

• For the auctions app:
– /api/add adds an auction
– /api/bid updates to a new, higher bid

better to have a more specific update vs general “change” operation
can do more error checking with more specific updates

Auction Server: routes.ts

export const addAuction =
 (req: SafeRequest, res: SafeResponse): void => {

 const name = req.body.name;
 if (typeof name !== 'string') {
 res.status(400).send("missing 'name' parameter");

 return;
 }
 // check the others (including minutes & minBid are valid ints)
 …

 const endTime = Date.now() + minutes * 60 * 1000; // in ms
 const auction: Auction = { id: auctions.length,
 name: name, description: description, seller: seller,
 endTime: endTime, maxBid: minBid - 1, maxBidder: seller };

 auctions.push(auction); // add this to the list
 res.send({auction: auction}); // send this to the client
};

Testing the Server

• Write unit tests for each route
– test creates fake request and response objects
– some tests may need to apply multiple operations

need to perform a few /api/add and then /api/list

• Test the server thoroughly before continuing
– debugging later will be painful, so make sure it’s right!

Example: Auctions 2.0

Recall: Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are described to us

• Then we can write it in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Recall: Finishing Step 3 for To-Do List

• Rewrote client-side To-Do App into client-server

• Instead of simply updating state:
– make a request to the server to have it update state
– once that completes, we update the client’s state
– this keeps the two copies of the state in sync

Recall: Auction Client: App.tsx

• Permanent state is the list of auctions

– the App component stores the auction list
passed down to subcomponents in their props

– subcomponents do not mutate the auction list
they invoke callbacks to have the App update the auction list

– can update the App to do client-server communication

Recall: Auction Client: App.tsx

• Permanent state is the list of auctions

– the App component stores the auction list
passed down to subcomponents in their props

– subcomponents do not mutate the auction list
they invoke callbacks to have the App update the auction list

doStartClick = (name: string, seller: string, …): void => {
 const auction = {name, seller, …}; // the new auction
 const auctions = this.state.auctions.concat([auction]);
 this.setState({page: “list”, auctions: auctions});
};

Auction Client: App.tsx

– change start to make a request to the server

doStartClick = (name: string, seller: string, …): void => {
 const args = {name, seller, description, minutes, minBid);
 fetch("/api/add", {
 method: "POST", body: JSON.stringify(args),

 headers: {"Content-Type": "application/json"} })
 .then(this.doAddResp)
 .catch(() => this.doAddError("failed to connect to server"));
};

Auction Client: App.tsx

– change start to make a request to the server

doAddResp = (resp: Response): void => {
 if (resp.status === 200) {
 resp.json().then(this.doAddJson)
 .catch(() => this.doAddError("not JSON"));
 } else if (resp.status === 400) {
 resp.text().then(this.doAddError)
 .catch(() => this.doAddError("not text"));
 } else {
 this.doAddError(`bad status code: ${resp.status}`);
 }
};

doAddError = (msg: string): void => {
 console.error(`Error fetching /api/add: ${msg}`);
};

Auction Client: App.tsx

– change start to make a request to the server

doAddJson = (data: unknown): void => {
 if (!isRecord(data)) {
 console.error("bad data from /api/add: not a record", data);
 return;
 }

 const auction = parseAuction(data.auction);
 if (auction !== undefined) {
 const auctions = this.state.auctions.concat([auction]);
 this.setState({page: “list”, auctions: auctions});
 } else {
 console.error(“not an auction”, data.auction);
 }
};

More Auction Features

• Our “Bid” button cannot mutate the auction
– must call back to the App and have it change the auction
– App will call setState with a new array of auctions
– App will later render AuctionDetails with a new auction

• This runs into a problem:
– RI relates props and state (bid is above min bid)
– RI is established in the constructor
– constructor will not run in this case!

Lifecycle Events

• Warning: React doesn’t unmount when props change
– instead, it re-renders and calls componentDidUpdate
– you can detect a props change there

componentDidUpdate =
 (prevProps: HiProps, prevState: HiState): void => {
 if (this.props.name !== prevProps.name) {
 … // our props were changed!
 }
};

– would need to fix the RI in this method (ugh)

More Auction Features

• Another user can bid on the item we are viewing
– no way to find out about it without talking to the server
– need a way to update the page without bidding

• Simple option: add a “Refresh” button
– requires /api/get on the server also
– “get” same as “bid” but we don’t change the auction

• Same fix to componentDidUpdate needed here
– the App is redrawing with different props
– need to update this.state.now
– NOTE: same now applies to AuctionList!

What’s Still Missing?

• Saw everything needed for proof-of-concept apps
– can test these with real users

• For non-demo, can’t store user data on one machine
– machines break, hard drives fail, etc.

• Sharing state between servers is complex
– requires even more sophisticated invariants
– see 452 for more on this

What’s Still Missing?

• Most apps use dedicate storage servers
– see 344 for sophisticated storage services

• Especially easy to do this with Map
– many options for extremely scalable Map services
– easy to swap out an in-memory Map for a service

• Our server becomes a client (“front-end server”)
– read/write from the map service is like a fetch

event handlers in the server now

– server can now be functional!
easier to get everything right

