
Arrays
James Wilcox & Kevin Zatloukal

CSE 331

Recall: Turning Recursion Into a Loop

• Saw templates for structural recursion on
– natural numbers straightforward
– lists harder

• Special case for tail recursion on
– lists straightforward

Processing Lists with Loops

• Hard to process lists with loops
– only have easy access to the last element added

natural processing would start from the other end

– must reverse the list to work “bottom up”
that requires an additional O(n) space

• There is an easier way to fix this…
– switch data structures
– use one that lets us access either end easily

“Lists are the original data structure for functional programming,
just as arrays are the original data structure of imperative programming”

Ravi Sethi

Array Accesses

• Easily access both A[0] and A[n-1], where n	=	A.length
– bottom-up loops are now easy

• “With great power, comes great responsibility”
— the Peter Parker Principle

• Whenever we write “A[j]”, we must check 0	≤	j	<	n
– new bug just dropped!

with list, we only need to worry about nil and non-nil
once we know L is non-nil, we know L.hd exists

– TypeScript will not help us with this!
type checker does catch “could be nil” bugs, but not this

Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

straight from spec heuristics type checking code reviews

no mutation “ libraries calculation
induction

local variable mutation “ “ Floyd logic

array mutation “ “ for-any facts

heap state mutation “ “ ?

Array Math

• Easily access both A[0] and A[n-1], where n	=	A.length
– bottom-up loops are now easy

• “With great power, comes great responsibility”
— the Peter Parker Principle

• Will need new tools for reasoning about arrays
– will start with new math for describing them

Array Literals

• Write array values in math like this:

	 A	:=	[1,	2,	3]	 	 	 	 	 (with	A	:	Arrayℤ)

– the empty array is “[]”

• Array literal syntax is the same in TypeScript:

const A: Array<bigint> = [1n, 2n, 3n];
const B: bigint[] = [4n, 5n];

– can write Arrayℤ as “Array<bigint>” or “bigint[]”

Array Concatenation

• Define the operation “⧺” as array concatenation
– makes clear the arguments are arrays, not numbers

• The following properties hold for any arrays A,	B,	C

A	⧺	[]	=	A	=	[]	⧺	A	 	 	 	 	 (“identity”)

A	⧺	(B	⧺	C)	=	(A	⧺	B)	⧺	C	 	 	 	 (“associativity”)

– we will use these facts without explanation in calculations
– second line says parentheses don’t matter, so

we will write A	⧺	B	⧺	C and not say where the (..) go

Array Concatenation Math

• Same properties hold for lists

[]	⧺	A	=	A	 	 	 	 	 	 concat(nil,	L)	=	L

A	⧺	[]	=	A	 	 	 	 	 	 concat(L,	nil)	=	L

A	⧺	(B	⧺	C)	=	(A	⧺	B)	⧺	C	 	 	 concat(A,	concat(B,	C))
	 	 	 	 	 	 	 	 =	concat(concat(A,	B),	C)

– we required explanation of these facts for lists
– but we will not require explanation of these facts for arrays

(trying to reason more quickly, now that we have more practice)

Defining Functions on Arrays

• Can still define functions recursively

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for any y	:	ℤ	and	A	:	Arrayℤ

– could write patterns with “[y]	⧺	A” instead

Subarrays

• Often useful to talk about part of an array (subarray)
– define the following notation

A[i	..	j]	=	[A[i],	A[i+1],	…,	A[j]]

– note that this includes A[j]
(some functions exclude the right end; we will include it)

Subarrays

A[i	..	j]	=	[A[i],	A[i+1],	…,	A[j]]

• Define this formally as follows

func	A[i	..	j]	 :=	[]		 	 	 	 	 if	j	<	i
	 	A[i	..	j]	 :=	A[i	..	j-1]	⧺	[A[j]]	 	 if	i	≤	j

– second case needs 0	≤	j	<	n for this to make sense
A[i	..	j] is undefined if	i	≤	j	and	(i	<	0	or	n	≤	j)

– note that A[0	..	-1]	=	[] since -1	<	0
“Isn’t -1 an array out of bounds error?”
In code, yes — In math, no (the definition says this is an empty array)

Subarray Math

func	A[i	..	j]	 :=	[]		 	 	 	 	 if	j	<	i
	 	A[i	..	j]	 :=	A[i	..	j-1]	⧺	[A[j]]	 	 if	0	≤	i	≤	j	<	A.length
	 	A[i	..	j]	 :=	undefined	 	 	 	 if i	≤	j	and	(i	<	0	or	A.length	≤	j)

• Some useful facts

A	=	A[0	..	n-1]	 	 	 (=	[A[0],	A[1],	…,	A[n-1]])
	 where	n	=	A.length

– the subarray from 0 to n	–	1 is the entire array

A[i	..	j]	=	A[i	..	k]	⧺	A[k+1	..	j]

– holds for any i,	j,	k	:	ℕ satisfying i	–	1	≤	k	≤	j		(and 0	≤	i	≤	j	<	n)

– we will use these without explanation

TypeScript Arrays

• Translating math to TypeScript

Math TypeScript

A	⧺	B	 	 	 	 	 	 A.concat(B)

A[i	..	j]	 	 	 	 	 	 A.slice(i, j+1)

– JavaScript’s A.slice(i, j) does not include A[j], so
we need to increase j by one

• Note: array out of bounds does not throw Error
– returns undefined

(hope you like debugging!)

Facts About Arrays

• “With great power, comes great responsibility”

• Since we can easily access any A[j],
may need to keep track of facts about it
– may need facts about every element in the array

applies to preconditions, postconditions, and intermediate assertions

• We can write facts about several elements at once:
– this says that elements at indexes 2 .. 10 are non-negative

	 0	≤	A[j]	for	any	2	≤	j	≤	10

– shorthand for 9 facts (0	≤	A[2],	…,	0	≤	A[10])

Finding an Element in an Array

• Can search for an element in an array as follows

func	contains([],	x)	 	 :=	F		 	 	 	 	 	 for any …
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y	 	 for any …
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y	 	 for any …

• Searches through the array in linear time
– did the same on lists

• Can search more quickly if the list is sorted
– precondition is A[0]	≤	A[1]	≤	…	≤	A[n-1] (informal)
– write this formally as

	 A[j]	≤	A[j+1]	for	any	0	≤	j	≤	n	–	2

Loops with Arrays

Sum of an Array

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for any y	:	ℤ	and	A	:	Arrayℤ

• Could translate this directly into a recursive function
– that would be straight from the spec

• Do this instead with a loop. Loop idea…
– use the “bottom up” approach
– start from [] and work up to all of A
– at any point, we have sum(A[0	..	j-1]) for some index j

I will add one extra fact we also need

Sum of an Array

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for	any	y	:	ℤ	and	A	:	Arrayℤ

• Loop implementation:

let j: bigint = 0n;
let s: bigint = 0n;

{{	Inv:	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	≤	A.length	}}
while (j < A.length) {
 s = s + A[j];

 j = j + 1n;

}

{{	s	=	sum(A)	}}
return s;

could write “j !== A.length”
but this is normal

Sum of an Array

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for	any	y	:	ℤ	and	A	:	Arrayℤ

• Loop implementation:

let j: bigint = 0n;
let s: bigint = 0n;
{{	j	=	0	and	s	=	0}}
{{	Inv:	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	≤	A.length	}}
while (j < A.length) {
 s = s + A[j];

 j = j + 1n;
}

{{	s	=	sum(A)	}}
return s;

Sum of an Array

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for	any	y	:	ℤ	and	A	:	Arrayℤ

• Loop implementation:

let j: bigint = 0n;
let s: bigint = 0n;
{{	j	=	0	and	s	=	0}}
{{	Inv:	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	≤	A.length	}}
while (j < A.length) {
 s = s + A[j];

 j = j + 1n;
}

{{	s	=	sum(A)	}}
return s;

s	 =	0
	 =	sum([])	 	 	 def of sum
	 =	sum(A[0	..	-1])	
	 =	sum(A[0	..	j	–	1])	 since j	=	0

j	 =	0
	 ≤	A.length

Sum of an Array

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for	any	y	:	ℤ	and	A	:	Arrayℤ

• Loop implementation:

let j: bigint = 0n;
let s: bigint = 0n;

{{	Inv:	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	≤	A.length	}}
while (j < A.length) {
 s = s + A[j];

 j = j + 1n;

}

{{	s	=	sum(A[0	..	j	–	1])	and	j	=	A.length	}}
{{	s	=	sum(A)	}}
return s;

Sum of an Array

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for	any	y	:	ℤ	and	A	:	Arrayℤ

• Loop implementation:

let j: bigint = 0n;
let s: bigint = 0n;

{{	Inv:	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	≤	A.length	}}
while (j < A.length) {
 s = s + A[j];

 j = j + 1n;

}

{{	s	=	sum(A[0	..	j	–	1])	and	j	=	A.length	}}
{{	s	=	sum(A)	}}
return s;

s	 =	sum(A[0	..	j	–	1])
	 =	sum(A[0	..	A.length	–	1])
	 =	sum(A)

Sum of an Array

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for	any	y	:	ℤ	and	A	:	Arrayℤ

• Loop implementation:

let j: bigint = 0n;
let s: bigint = 0n;

{{	Inv:	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	≤	A.length	}}
while (j < A.length) {
 {{	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	<	A.length	}}
 s = s + A[j];

 j = j + 1n;

 {{	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	≤	A.length	}}
}

{{	s	=	sum(A)	}}
return s;

Sum of an Array

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for	any	y	:	ℤ	and	A	:	Arrayℤ

• Loop implementation:

while (j < A.length) {
 {{	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	<	A.length	}}
 s = s + A[j];

 {{	s	–	A[j]	=	sum(A[0	..	j	–	1])	and	0	≤	j	<	A.length	}}
 j = j + 1n;

 {{	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	≤	A.length	}}
}

Sum of an Array

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for	any	y	:	ℤ	and	A	:	Arrayℤ

• Loop implementation:

while (j < A.length) {
 {{	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	<	A.length	}}
 s = s + A[j];

 {{	s	–	A[j]	=	sum(A[0	..	j	–	1])	and	0	≤	j	<	A.length	}}
 j = j + 1n;

 {{	s	–	A[j	–	1]	=	sum(A[0	..	j	–	2])	and	0	≤	j	–	1	<	A.length	}}
 {{	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	≤	A.length	}}
}

Sum of an Array

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for	any	y	:	ℤ	and	A	:	Arrayℤ

• Loop implementation:

while (j < A.length) {
 {{	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	<	A.length	}}
 s = s + A[j];

 {{	s	–	A[j]	=	sum(A[0	..	j	–	1])	and	0	≤	j	<	A.length	}}
 j = j + 1n;

 {{	s	–	A[j	–	1]	=	sum(A[0	..	j	–	2])	and	0	≤	j	–	1	<	A.length	}}
 {{	s	=	sum(A[0	..	j	–	1])	and	0	≤	j	≤	A.length	}}
}

s	 =	sum(A[0	..	j	–	2])	+	A[j	–	1]	 since s	–	A[j-1]	=	sum(..)
	 =	sum(A[0	..	j	–	2]	⧺	[A[j	–	1]])	 def of sum
	 =	sum(A[0	..	j	–	1])

Recursion versus Loops

• There is a fundamental tension between:
– Natural recursive order (bottom-up, aka back-to-front)
– Natural loop order (front-to-back)

• Three ways to bridge this gap:
– Make the loop serve the recursion

Bottom-up list loop template calling rev(L)

– Make the recursion serve the loop
Tail recursion

– Change the data structure
Arrays

Recursion versus Loops

• Three ways to bridge this gap:
– Make the loop serve the recursion

func		sum(nil)		 	 :=	0
	 	sum(cons(x,	L))	 :=	x	+	sum(L)	 for	any	x	:	ℤ	and	L	:	List

– Make the recursion serve the loop

func		sum-acc(nil,	s)	 	 :=	s
	 	sum-acc(cons(x,	L),	s)	 :=	sum-acc(L,	x	+	s)	for	any	x	:	ℤ	and	L	:	List

– Change the data structure

func	sum([])	 	 :=	0
	 sum(A	⧺	[y])	 :=	sum(A)	+	y	 	 for	any	y	:	ℤ	and	A	:	Arrayℤ

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Could translate this directly into a recursive function
– that would be straight from the spec

• Do this instead with a loop. Loop idea…
– use the “bottom up” template
– start from [] and work up to all of A
– but we can stop immediately if we find x

contains returns true in that case

– otherwise, we have contains(A[0	..	j–1],	x)	=	F for some j

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

let j: bigint = 0n;
{{	Inv:	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	≤	A.length	}}
while (j < A.length) {
 if (A[j] === x)

 {{	contains(A,	x)	=	T	}}
 return true;
 j = j + 1n;

}

{{	contains(A,	x)	=	F	}}
return false;

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

let j: bigint = 0n;
{{	j	=	0	}}
{{	Inv:	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	≤	A.length	}}
while (j < A.length) {
 if (A[j] === x)
 return true;
 j = j + 1n;

}

return false;

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

let j: bigint = 0n;
{{	j	=	0	}}
{{	Inv:	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	≤	A.length	}}
while (j < A.length) {
 if (A[j] === x)
 return true;
 j = j + 1n;

}

return false;

contains(A[0	..	j–1],	x)
	=	contains(A[0	..	-1],	x)	 since j	=	0
	=	contains([],	x)
	=	F		 	 	 	 	 def of contains

0	≤	0	=	j		 and	 	 j	=	0	≤	A.length

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

let j: bigint = 0n;
{{	Inv:	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	≤	A.length		}}
while (j < A.length) {
 if (A[j] === x)
 return true;
 j = j + 1n;

}

{{	contains(A[0	..	j–1],	x)	=	F	and	j	=	A.length	}}
{{	contains(A,	x)	=	F	}}
return false;

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

let j: bigint = 0n;
{{	Inv:	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	≤	A.length		}}
while (j < A.length) {
 if (A[j] === x)
 return true;
 j = j + 1n;

}

{{	contains(A[0	..	j–1],	x)	=	F	and	j	=	A.length	}}
{{	contains(A,	x)	=	F	}}
return false;

F	=	contains(A[0	..	j–1],	x)
			=	contains(A[0	..	A.length	–	1],	x)	 since j	=	…
			=	contains(A,	x)

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

while (j < A.length) {
 {{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	<	A.length	}}
 if (A[j] === x)

 {{	contains(A,	x)	=	T	}}
 return true;
 j = j + 1n;

 {{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	≤	A.length	}}
}

return false;

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

{{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	<	A.length	}}
if (A[j] === x) {
 {{	contains(A,	x)	=	T	}}
 return true;
} else {
}

j = j + 1n;

{{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	≤	A.length	}}

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

{{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	<	A.length	}}
if (A[j] === x) {
 {{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	<	A.length	and	A[j]	=	x	}}
 {{	contains(A,	x)	=	T	}}
 return true;
} else {
…

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

{{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	<	A.length	}}
if (A[j] === x) {
 {{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	<	A.length	and	A[j]	=	x	}}
 {{	contains(A,	x)	=	T	}}
 return true;
} else {
… contains(A[0	..	j],	x)

	=	contains(A[0	..	j-1]	⧺	[A[j]],	x)
	=	T		 	 	 	 	 	 	 since A[j]	=	x

Can	now	prove	by	induction	that	contains(A,	x)	=	T

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

{{	contains(A[0	..	j–1],	x)	=	F	and	j	<	A.length	}}
if (A[j] === x) {
 return true;
} else {

 {{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	<	A.length	and	A[j]	≠	x	}}
 {{	contains(A[0	..	j],	x)	=	F	and	0	≤	j+1	≤	A.length	}}
}

{{	contains(A[0	..	j],	x)	=	F	and	0	≤	j+1	≤	A.length	}}
j = j + 1;

{{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	≤	A.length	}}

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

{{	contains(A[0	..	j–1],	x)	=	F	and	j	<	A.length	}}
if (A[j] === x) {
 return true;
} else {

 {{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	<	A.length	and	A[j]	≠	x	}}
 {{	contains(A[0	..	j],	x)	=	F	and	0	≤	j+1	≤	A.length	}}
}

Linear Search of an Array

func	contains([],	x)	 	 :=	F		 	 	 	 	
	 contains(A	⧺	[y],	x)	 :=	T		 	 	 if	x	=	y
	 contains(A	⧺	[y],	x)	 :=	contains(A,	x)	 if	x	≠	y

• Loop implementation:

{{	contains(A[0	..	j–1],	x)	=	F	and	j	<	A.length	}}
if (A[j] === x) {
 return true;
} else {

 {{	contains(A[0	..	j–1],	x)	=	F	and	0	≤	j	<	A.length	and	A[j]	≠	x	}}
 {{	contains(A[0	..	j],	x)	=	F	and	0	≤	j+1	≤	A.length	}}
}

F	=	contains(A[0	..	j–1],	x)
			=	contains(A[0	..	j	–1]	⧺	[A[j]],	x)	 def of contains	(since A[j]	≠	x)
			=	contains(A[0	..	j],	x)

Loop Invariants with Arrays

• Saw two more examples previously

{{	Inv:	s	=	sum(A[0	..	j	–	1])	…	}}	 	 	 	 	 	 sum of array
{{	Post:	s	=	sum(A[0	..	n	–	1])	}}

{{	Inv:	contains(A[0	..	j	–	1],	x)	=	F	…	}}	 	 	 	 search an array
{{	Post:	contains(A[0	..	n	–	1],	x)	=	F	}}

– in both cases, Post is a special case of Inv (where j	=	n)
– in other words, Inv is a weakening of Post

• Heuristic for loop invariants: weaken the postcondition
– assertion that allows postcondition as a special case
– must also allow states that are easy to prepare

Heuristic for Loop Invariants

• Loop Invariant allows both start and stop states
– describing more states = weakening

{{	P	}}
{{	Inv:	I	}}
while (cond) {
 S
}

{{	Q	}}

– usually are many ways to weaken it…

QIP

Searching a Sorted Array

• Suppose we require A to be sorted:
– precondition includes

A[j–1]	≤	A[j]	for	any	1	≤	j	<	n	 	 (where n	:=	A.length)

• Want to find the index k where “x” would be…
– picture would look like this:

0 k n

A __	<	x x	≤	__

Aside: Array Facts as Pictures

• Can use pictures to write array facts concisely
– one thing that whiteboard in your office is good for

• Example above encodes several facts:
– 	A[j]	<	x	for	any	0	≤	j	<	k
– 	x	≤	A[j]	for	any	k	≤	j	<	n
– 	0	≤	k	≤	n

0 k n

A __	<	x x	≤	__

Searching a Sorted Array

• End with complete knowledge of A[j] vs x
– how can we describe partial knowledge?

• Recall: loop for contains
– postcondition says to return contains(A,	x)
– but we exit loop knowing contains(A,	x)	=	F

0 k n

A __	<	x x	≤	__

Searching a Sorted Array

• End with complete knowledge of A[j] vs x
– how can we describe partial knowledge?
– we will focus on the elements that are smaller than x

0 k n

A

0 n

A

k

__	<	x x	≤	__

__	<	x

Searching a Sorted Array

• End with complete knowledge of A[j] vs x
– how can we describe partial knowledge?

0 k n

A

0 n

A

k

• Loop idea… increase k until we hit x	≤	A[k]

__	<	x x	≤	__

__	<	x

Searching a Sorted Array

// @returns true if A[j] = x for some 0 <= j < n
// false if A[j] != x for any 0 <= j < n

• Loop implementation:

let k: bigint = 0n;

{{	Inv:	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	≤	n	}}
while (k < A.length && A[k] <= x) {
 if (A[k] === x) {
 return true;
 } else {
 k = k + 1n;
 }

}

return false;

Searching a Sorted Array

let k: bigint = 0n;

{{	k	=	0	}}
{{	Inv:	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	≤	n	}}
while (k < A.length && A[k] <= x) {
 if (A[k] === x) {
 return true;
 } else {
 k = k + 1n;

 }

}

return false;

What is the claim when k	=	0?

A[j]	<	x	for	any	0	≤	j	<	0

What values of j satisfy 0	≤	j	<	0?

None. Nothing is claimed.

Statement is (vacuously) true when k	=	0

With “for any” facts, we need to think about
exactly what facts are being claimed.

0 nk

k

Searching a Sorted Array

let k: bigint = 0n;

{{	Inv:	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	≤	n	}}
while (k < A.length && A[k] <= x) {
 if (A[k] === x) {
 return true;
 } else {
 k = k + 1n;

 }

}

{{	A[j]	<	x	for	any	0	≤	j	<	k	and	(k	=	n	or	A[k]	>	x)	}}
{{	A[j]	≠	x	for	any	0	≤	j	<	n	}}
return false;

Top assertion has an “or”, so we argue by cases.

Searching a Sorted Array

while (k < A.length && A[k] <= x) {
 if (A[k] === x) {
 return true;
 } else {
 k = k + 1n;
 }

}

{{	A[j]	<	x	for	any	0	≤	j	<	k	and	(k	=	n	or	A[k]	>	x)	}}
{{	A[j]	≠	x	for	any	0	≤	j	<	n	}}
return false;

Know that A[j]	<	x	for	any	0	≤	j	<	n		 (since k	=	n)

Case k	=	n	(=	A.length):

This means A[j]	≠	x	for	any	0	≤	j	<	n		 (since A[j]	<	x	implies	A[j]	≠	x)

Searching a Sorted Array

while (k < A.length && A[k] <= x) {
 if (A[k] === x) {
 return true;
 } else {
 k = k + 1n;
 }

}

{{	A[j]	<	x	for	any	0	≤	j	<	k	and	(k	=	n	or	A[k]	>	x)	}}
{{	A[j]	≠	x	for	any	0	≤	j	<	n	}}
return false;

Know that A[j]	<	x	for	any	0	≤	j	<	k	and	x	<	A[k]

Case x	<	A[k]:

Precondition (sorted) says A[k]	≤	A[k+1]	≤		…

Know that A[j]	<	x	for	any	0	≤	j	<	k	and	x	<	A[j]	for	any	k	≤	j	<	n

This means A[j]	≠	x	for	any	0	≤	j	<	n

0 nk

Searching a Sorted Array

while (k < A.length && A[k] <= x) {
 if (A[k] === x) {
 return true;
 } else {
 k = k + 1n;
 }

}

{{	A[j]	<	x	for	any	0	≤	j	<	k	and	(k	=	n	or	A[k]	>	x)	}}
{{	A[j]	≠	x	for	any	0	≤	j	<	n	}}
return false;

Since one of the cases k	=	n and x	<	A[k] must hold,
we have shown that

 A[j]	≠	x	for	any	0	≤	j	<	n

holds in general.

Searching a Sorted Array

let k: bigint = 0n;

{{	Inv:	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	≤	n	}}
while (k < A.length && A[k] <= x) {
 {{	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	<	n	and	A[k]	≤	x	}}
 if (A[k] === x) {
 return true;
 } else {
 k = k + 1n;

 }

 {{	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	≤	n	}}
}

return false;

Searching a Sorted Array

{{	Inv:	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	≤	n	}}
while (k < A.length && A[k] <= x) {
 {{	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	<	n	and	A[k]	≤	x	}}
 if (A[k] === x) {
 {{	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	<	n	and	A[k]	=	x	}}
 {{	A[j]	=	x	for	some	0	≤	j	<	n	}}
 return true;
 }

Is the postcondition true?

Yes! It holds for j	=	k

0 nk

x

Searching a Sorted Array

{{	Inv:	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	≤	n	}}
while (k < A.length && A[k] <= x) {
 {{	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	<	n	and	A[k]	≤	x	}}
 if (A[k] === x) {
 return true;
 } else {
 {{	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	<	n	and	A[k]	<	x	}}
 k = k + 1n;

 {{	A[j]	<	x	for	any	0	≤	j	<	k-1	and	0	≤	k-1	<	n	and	A[k-1]	<	x	}}
 }

 {{	A[j]	<	x	for	any	0	≤	j	<	k-1	and	0	≤	k-1	<	n	and	A[k-1]	<	x	}}
 {{	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	≤	n	}}
}

return false;

0 nk

k–1Step 1: What facts need proof?

Only A[k-1]	<	x

Searching a Sorted Array

{{	Inv:	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	≤	n	}}
while (k < A.length && A[k] <= x) {
 {{	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	<	n	and	A[k]	≤	x	}}
 if (A[k] === x) {
 return true;
 } else {
 {{	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	<	n	and	A[k]	<	x	}}
 k = k + 1n;

 {{	A[j]	<	x	for	any	0	≤	j	<	k-1	and	0	≤	k-1	<	n	and	A[k-1]	<	x	}}
 }

 {{	A[j]	<	x	for	any	0	≤	j	<	k–1	and	0	≤	k–1	<	n	and	A[k–1]	<	x	}}
 {{	A[j]	<	x	for	any	0	≤	j	<	k	and	0	≤	k	≤	n	}}
}

return false;

Step 1: What facts need proof?

A[k-1]	<	x is known

Step 2: prove the new fact(s)

Only A[k-1]	<	x

Loops Invariants with Arrays

• Loop invariants often have lots of facts
– recursion has fewer

• Much of the work is just keeping track of them
– “dynamic programs” (421) are often like this
– common to need to write these down

more likely to see line-by-line reasoning on hard problems

Loops Invariants with Arrays

Implications btw “for any” facts are proven in two steps:

1. Figure out what facts are not already known

2. Prove just those “new” facts

Another Example:

		{{	A[j]	<	x	for	any	0	<	j	<	k	}}	versus
		{{	A[j]	<	x	for	any	0	≤	j	<	k	}}

– only need to prove A[0]	<	x
0 k n

0 k n

__	<	x

__	<	x

Finding Loop Invariants

• Loop invariant is often a weakening of postcondition…

{{	Inv:	s	=	sum(A[0	..	j	–	1])	…	}}	 	 	 	 	 	 sum of array
{{	Post:	s	=	sum(A[0	..	n	–	1])	}}

{{	Inv:	contains(A[0	..	j	–	1],	x)	=	F	…	}}	 	 	 	 search an array
{{	Post:	contains(A[0	..	n	–	1],	x)	=	F	}}

– but not always…

{{	Inv:	A[j]	<	x	for	any	0	≤	j	<	k	…	}}	 	 	 	 	 search a
{{	Post:	A[j]	≠	x	for	any	0	≤	j	<	n	}}	 	 	 	 	 					sorted array

Array Loop Expectations

In 331, expect you to (eventually) be able to

1. Write invariant that is a simple weakening of postcondition
– problems of lower complexity

2. Write the code, given the idea & invariant
– problems of moderate complexity

3. Check correctness, given code with invariant
– problems of higher complexity
– (not possible without invariant)

Array Loop Expectations

In 331, expect you to (eventually) be able to

1. Write invariant that is a simple weakening of postcondition
– problems of lower complexity
– typical examples:

{{	Inv:	s	=	sum(A[0	..	j	–	1])	…	}}	 	 	 	 	 sum of array
{{	Post:	s	=	sum(A[0	..	n	–	1])	}}

{{	Inv:	contains(A[0	..	j	–	1],	x)	=	F	…	}}		 	 	 search an array
{{	Post:	contains(A[0	..	n	–	1],	x)	=	F	}}

Array Loop Expectations

In 331, expect you to (eventually) be able to

1. Write invariant that is a simple weakening of postcondition
– problems of lower complexity

2. Write the code, given the idea & invariant
– problems of moderate complexity

3. Check correctness, given code with invariant
– problems of higher complexity
– (not possible without invariant)

Searching a Sorted Array (Take Two)

• What is a faster way to search a sorted array?
– use binary search!
– invariant looks like this:

0 k n

A

0 k n

A

i

A[j]	<	x	for	any	0	≤	j	<	i x	≤	A[j]	for	any	k	≤	j	<	n

__	<	x x	≤	__

Searching a Sorted Array (Take Two)

• Would not expect you to invent binary search
– but would expect you can code review an implementation

all code and the invariant are provided

0 k n

A __	<	x x	≤	__

Array Loop Expectations

In 331, expect you to (eventually) be able to

1. Write invariant that is a simple weakening of postcondition
– problems of lower complexity

2. Write the code, given the idea & invariant
– problems of moderate complexity

3. Check correctness, given code with invariant
– problems of higher complexity
– (not possible without invariant)

From Invariant to Code (Problem Type 2)

• Algorithm Idea formalized in
– invariant
– progress step (e.g., j	=	j	+	1)

From invariant to code:
1. Write code before loop to make Inv hold initially
2. Write code inside loop to make Inv hold again
3. Choose exit so that “Inv	and	not	cond” implies postcondition

QIP

Max of an Array (Problem Type 2)

• Calculate a number “m” that is the max in array A

• Algorithm Idea…
– look through the loop from k	=	0 up to n	–	1
– keep track of the maximum of A[0	..	k–1] in “m”
– formalize that in an invariant…

0 nk

m	=	max(...)

Max of an Array (Problem Type 2)

• Calculate a number “m” that is the max in array A

• Algorithm Idea…
– look through the loop from k	=	0 up to n	–	1
– keep track of the maximum of A[0	..	k–1] in “m”
– m is the maximum of A[0	..	k–1], i.e.,

A[j]	≤	m	for	any	0	≤	j	<	k	 	 	 m is at least A[0],	..,	A[k-1]
A[i]	=	m	and	0	≤	i	<	k	 	 	 	 m is some A[i]	in this range

• Invariant references “m”, “k”, and “i”
– these will be variables in the code

Max of an Array (Problem Type 2)

{{	Pre:	n	:=	A.length	>	0	}}
let k: bigint = …
let i: bigint = …
let m: bigint = …

{{	Inv:	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	≤	n	}}
while (_________) {
 …

 k = k + 1n;

}

{{	Post:	(A[j]	≤	m	for	any	0	≤	j	<	n)	and	A[i]	=	m	and	0	≤	j	<	n	}}
return m;

What’s an easy way to make this hold?

k	=	1	and i	=	0	and m	=	A[i]

Max of an Array (Problem Type 2)

{{	Pre:	n	:=	A.length	>	0	}}
let k: bigint = 1n;
let i: bigint = 0n;
let m: bigint = A[0];

{{	Inv:	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	≤	n	}}
while (_________) {
 …

 k = k + 1n;

}

{{	Post:	(A[j]	≤	m	for	any	0	≤	j	<	n)	and	A[i]	=	m	and	0	≤	i	<	n	}}
return m;

What extra fact would make this match Post?
k	=	n

Max of an Array (Problem Type 2)

{{	Pre:	n	:=	A.length	>	0	}}
let k: bigint = 1n;
let i: bigint = 0n;
let m: bigint = A[0];

{{	Inv:	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	≤	n	}}
while (k < n) {
 …

 k = k + 1n;

}

{{	Post:	(A[j]	≤	m	for	any	0	≤	j	<	n)	and	A[j]	=	m	and	0	≤	i	<	n	}}
return m;

Max of an Array (Problem Type 2)

{{	Pre:	n	:=	A.length	>	0	}}
let k: bigint = 1n;
let i: bigint = 0n;
let m: bigint = A[i];

{{	Inv:	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	≤	n	}}
while (k < n) {

 {{	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	<	n	}}
 …

 k = k + 1n;

 {{	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	≤	n	}}
}

{{	Post:	(A[j]	≤	m	for	any	0	≤	j	<	n)	and	A[i]	=	m	for	some	0	≤	i	<	n	}}
return m;

Max of an Array (Problem Type 2)

{{	Pre:	n	:=	A.length	>	0	}}
let k: bigint = 1n;
let i: bigint = 0n;
let m: bigint = A[0];

{{	Inv:	A[j]	≤	m	for	any	0	≤	j	<	k	and	A[j]	=	m	for	some	0	≤	j	<	k	and	0	≤	k	≤	n	}}
while (k < n) {

 {{	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	<	n	}}
 …

 {{	(A[j]	≤	m	for	any	0	≤	j	<	k+1)	and	A[i]	=	m	and	0	≤	i	<	k+1	≤	n	}}
 k = k + 1n;

 {{	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	≤	n	}}
}

{{	Post:	A[j]	≤	m	for	any	0	≤	j	<	n	and	A[j]	=	m	for	some	0	≤	j	<	n	}}
return m;

Max of an Array (Problem Type 2)

{{	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	<	n	}}
 …

{{	(A[j]	≤	m	for	any	0	≤	j	<	k+1)	and	A[i]	=	m	and	0	≤	i	<	k+1	≤	n	}}

Tricky because max(..) involves two sets of facts
(the “for any” and the “A[i]	=	m”)

0 nk

m	=	max(...)

0 nk+1

m	=	max(...)

Top:

Bottom:

Max of an Array (Problem Type 2)

{{	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	<	n	}}
 …

{{	(A[j]	≤	m	for	any	0	≤	j	<	k+1)	and	A[i]	=	m	and	0	≤	i	<	k+1	≤	n	}}

Step 1: What facts are new in the bottom assertion?

Just A[k]	≤	m

What code do we write to ensure A[k]	≤	m?

Max of an Array (Problem Type 2)

while (k < n) {
 {{	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	<	n	}}
 if (A[k] <= m) {
 // we’re good!
 } else {
 // uh oh! what now ??
 }

 {{	((A[j]	≤	m	for	any	0	≤	j	<	k+1)	and	A[i]	=	m		and	0	≤	i	<	k+1	≤	n	}}
 k = k + 1n;

}

Step 2: What do we do if A[k]	>	m	does not hold?

We must change m so that A[k]	≤	m holds again

But we also need to A[i]	=	m (and 0	≤	i	<	k+1) to still hold

How do we do that?

Max of an Array (Problem Type 2)

{{	Pre:	n	:=	A.length	>	0	}}
let k: bigint = 1n;
let i: bigint = 0n;
let m: bigint = A[0];

{{	Inv:	(A[j]	≤	m	for	any	0	≤	j	<	k)	and	A[i]	=	m	and	0	≤	i	<	k	≤	n	}}
while (k < n) {
 if (A[k] > m) {
 i = k;

 m = A[i];

 }

 k = k + 1n;

}

{{	Post:	(A[j]	≤	m	for	any	0	≤	j	<	n_	and	A[i]	=	m	and	0	≤	i	<	n	}}
return m;

Servers & Routes

Client-Side JavaScript

• Code so far has run inside the browser
– webpack-dev-server handles HTTP requests
– sends back our code to the browser

• Browser executes the code of index.tsx
– calls root.render to produce the UI

index.html
index.tsx etc.

webpack-dev-server

HTTP request

Server-Side JavaScript

• Can run code in the server as well
– allows us to store data on the server instead
– “node” executes the code of index.ts

• Start writing server-side code in HW7
– will have code in both browser and server in HW8-9

HTTP request

HTTP response

our server

HTTP Terminology

• HTTP request includes
– method: GET or POST (for us)

GET is used to read data stored on the server (cacheable)
POST is used to change data stored on the server

– URL: path and query parameters
can include query parameters

– body (for POST only)
useful for sending large or non-string data with the request

• Browser issues a GET request when you type URL

server name path

HTTP Terminology

• HTTP response includes
– status code: 200 (ok), 400-99 (client error),

 or 500-99 (server error)
was the server able to respond

– content type: text/HTML or application/JSON (for us)
what sort of data did the server send back

– content
in format described by the Content Type

• Browser expects HTML to display in the page
– we will send JSON data back to our code in the browser

Custom Server

• Create a custom server as follows:

const F = (req: SafeRequest, res: SafeResponse): void => {
 …
}

const app = express();
app.get(“/foo”, F);
app.listen(8080);

– request for http://localhost:8080/foo will call F
– mapping from “/foo” to F is called a “route”
– can have as many routes as we want (with different URLs)

SafeRequest is an alias of Request<..> with proper type parameters filled in

http://localhost:8080/foo

Custom Server

• Query parameters (e.g., ?name=Fred) in SafeRequest

const F = (req: SafeRequest, res: SafeResponse): void => {
 const name: string|undefined = req.query.name;
 if (name === undefined) {
 res.status(400).send(“Missing ‘name’”);
 return;
 }
 … // name was provided

}

– set status to 400 to indicate a client error (Bad Request)
– set status to 500 to indicate a server error
– default status is 200 (OK)

type is more complicated...
parameters can be repeated

Custom Server

• Query parameters (e.g., ?name=Fred) in SafeRequest

const F = (req: SafeRequest, res: SafeResponse): void => {
 const name: string|undefined = first(req.query.name);
 if (name === undefined) {
 res.status(400).send(“Missing ‘name’”);
 return;
 }
 … // name was provided

}

– set status to 400 to indicate a client error (Bad Request)
– set status to 500 to indicate a server error
– default status is 200 (OK)

Custom Server

• Query parameters (e.g., ?name=Fred) in SafeRequest

const F = (req: SafeRequest, res: SafeResponse): void => {
 const name: string|undefined = req.query.name;
 if (name === undefined) {
 res.status(400).send(“Missing ‘name’”);
 return;
 }
 res.send({message: `Hi, ${name}`});

}

– send of string returned as text/HTML
– send of record returned as application/JSON

Example App from Section 7

User types “blue” and presses “Submit”…

Server-Side JavaScript

• Apps will make sequence of requests to server

GET /new

{text: “Your fav color is?”}

our server
GET /check?answer=blue

{correct: false}

GET /check?answer=yellow

{correct: true}

“Network” Tab Shows Requests

• Shows every request to the server
– first request loads the app (as usual)
– “new” is a request to get a question
– “check?index=0&answer=blue” is a request to check answer

• Click on a request to see details…

“Network” Tab Shows Request & Response

JSON

• JavaScript Object Notation
– text description of JavaScript object
– allows strings, numbers, null, arrays, and records

no undefined and no instances of classes
no ‘..’ (single quotes), only “..”
requires quotes around keys in records

– another tree!

• Translation into string done automatically by send

res.send({index: 0, text: ’What is your …?’});

Testing Server-Side TypeScript

• A route calls an ordinary function

• Testing is the same as on the client side
– write unit tests in X_test.ts files
– run then using npm run test

• Libraries help set up Request & Response for tests
– can check the status returned was correct

e.g., 200 or 400

– can check the response body was correct
e.g., “Missing ‘name’” or {message: “Hi, Fred”}

Testing Server-Side TypeScript

• A route calls an ordinary function

• Client- and server-side code is made up of functions
– server functions handles requests for specific URLs
– client functions draw data, create requests, etc.
– test (and code review) each one

• Key Point: unit test each function thoroughly
– often hard to figure which part caused the failure

failure in the client could be due to a bug in the server

– debugging that will be painful
– need a higher standard of correctness in a larger app

much easier to debug failing tests than errors in the app

Functions with Mutations

Specifying Functions that Mutate

• Our functions so far have not mutated anything
makes things much simpler!

• Cannot yet write a spec for sorting an array
– could return a sorted version of the array
– but cannot say that we change the array to be sorted

• Need some new tags to describe that…

Specifying Functions that Mutate

• By default, no parameters are mutated
– must explicitly say that mutation is possible (default not)

/**
 * Reorders A so the numbers are in increasing order
 * @param A array of integers to be sorted
 * @modifies A
 * @effects A contains the same numbers but now in
 * increasing order
 */
const quickSort = (A: bigint[]): void => { .. };

– anything that might be changed is listed in @modifies
not a promise to modify it — A could already be sorted!
a shorter modifies list is a stronger specification

Specifying Functions that Mutate

• By default, no parameters are mutated
– must explicitly say that mutation is possible (default not)

/**
 * Reorders A so the numbers are in increasing order
 * @param A array of integers to be sorted
 * @modifies A
 * @effects A contains the same numbers but now in
 * increasing order
 */
const quickSort = (A: bigint[]): void => { .. };

– @effects gives promises about result after mutation
like @returns but for mutated values, not return value
this returns void, so no @returns

Mutating Arrays

• Assigning to array elements changes known state

{{	A[j	–	1]	<	A[j]	for	any	1	≤	j	≤	5	}}
A[0] = 100;

{{	A[j	–	1]	<	A[j]	for	any	2	≤	j	≤	5	and	A[0]	=	100	}}

• Can add to the end of an array

A.push(100);

{{	A	=	A0	⧺	[100]	}}

• Can remove from the end of an array

A.pop();

{{	A	=	A0[0	..	n	–	2]	}} A has one fewer element than before

Example Mutating Function

• Reorder an array so that
– negative numbers come first, then zeros, then positives

(not necessarily fully sorted)

/**
 * Reorders A into negatives, then 0s, then positive
 * @modifies A
 * @effects leaves same integers in A but with
 * A[j] < 0 for 0 <= j < i
 * A[j] = 0 for i <= j < k
 * A[j] > 0 for k <= j < n
 * @returns the indexes (i, k) above
 */
const sortPosNeg = (A: bigint[]): [bigint,bigint] =>

Example: Sorting Negative, Zero, Positive

// @effects leaves same numbers in A but with
// A[j] < 0 for 0 <= j < i
// A[j] = 0 for i <= j < k
// A[j] > 0 for k <= j < n

Let’s implement this…
– what was our heuristic for guessing an invariant?
– weaken the postcondition

< 0 = 0 > 0

i k n0

Example: Sorting Negative, Zero, Positive

How should we weaken this for the invariant?
– needs allow elements with unknown values

initially, we don’t know anything about the array values

< 0 = 0 > 0?

< 0 = 0 > 0?

< 0 = 0 > 0?

< 0 = 0 > 0 ?

Example: Sorting Negative, Zero, Positive

Our Invariant:

	 	 	 A[ℓ]	<	0	for	any	0	≤	ℓ	<	i
	 	 	 A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
	 	 	 (no	constraints	on	A[ℓ]	for	j	≤	ℓ	<	k)
	 	 	 A[ℓ]	>	0	for	any	k	≤	ℓ	<	n

< 0 = 0 > 0

i k n0

?

j

Example: Sorting Negative, Zero, Positive

• Let’s try figuring out the code (problem type 2)
– on homework, this would be type 3 (check correctness)

• Figure out the code for
– how to initialize
– when to exit
– loop body

< 0 = 0 > 0

i k n0

?

j

?

Example: Sorting Negative, Zero, Positive

• Will have variables i, j, and k with i	≤	j	<	k

• How do we set these to make it true initially?
– we start out not knowing anything about the array values
– set i	=	j	=	0 and k	=	n

< 0 = 0 > 0

i k n0

?

j

i k
n0

j

Example: Sorting Negative, Zero, Positive

• Set i	=	j	=	0 and k	=	n to make this hold initially

• When do we exit?
– purple is empty if j	=	k

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i
k

n0 j

Sort Positive, Zero, Negative

let i: bigint = 0n;
let j: bigint = 0;
let k: bigint = A.length;

{{	Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
													A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n}}
while (j < k) {
 ...
}

{{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
					A[ℓ]	>	0	for	any	j	≤	ℓ	<	n	}}
return [i, j];

Example: Sorting Negative, Zero, Positive

• How do we make progress?
– try to increase j by 1 or decrease k by 1

• Look at A[j] and figure out where it goes

• What to do depends on A[j]
– could be <	0, =	0, or >	0

< 0 = 0 > 0

i k n0

?

j

Example: Sorting Negative, Zero, Positive

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i k n0

?

j

Set j	=	j0	+	1

Swap A[i] and A[j]
Set i	=	i0	+	1
and j	=	j0	+	1

Swap A[j] and A[k–1]
Set k	=	k0	–	1

Sort Positive, Zero, Negative

{{	Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
													A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n	}}
while (j !== k) {
 if (A[j] === 0n) {
 j = j + 1n;

 } else if (A[j] < 0n) {
 swap(A, i, j);

 i = i + 1n;

 j = j + 1n;

 } else {
 swap(A, j, k);

 k = k – 1n;

 }

}

Combine forward and backward
reasoning to double check correctness.

Sort Positive, Zero, Negative

{{	Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
													A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	}}
while (j !== k) {
 …

 } else if (A[j] < 0n) {
 {{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
															A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n	and	A[j]	<	0	}}
 swap(A, i, j);

 i = i + 1n;

 j = j + 1n;

 {{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
															A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n	}}
 }

 …

Sort Positive, Zero, Negative

{{	Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
													A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	}}
while (j !== k) {
 …

 } else if (A[j] < 0n) {
 {{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
															A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	A[j]	<	0	}}
 swap(A, i, j);

 {{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i+1	and	A[ℓ]	=	0	for	any	i+1	≤	ℓ	<	j+1
															A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i+1	≤	j+1	≤	k	≤	n	}}
 i = i + 1n;

 j = j + 1n;

 {{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
															A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n	}}
 }

 …

Sort Positive, Zero, Negative

{{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i	and	A[ℓ]	=	0	for	any	i	≤	ℓ	<	j
					A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i	≤	j	≤	k	≤	n	and	A[j]	<	0	}}
swap(A, i, j);

{{	A[ℓ]	<	0	for	any	0	≤	ℓ	<	i+1	and	A[ℓ]	=	0	for	any	i+1	≤	ℓ	<	j+1
					A[ℓ]	>	0	for	any	k	≤	ℓ	<	n	and	0	≤	i+1	≤	j+1	≤	k	≤	n	}}

Easiest to stop here since this is a function call. (Need to use its spec.)

Step 1: What facts are new in the bottom assertion?

New facts are A[i]	<	0				and A[j]	=	0

Initially have A[i]	=	0				and A[j]	<	0

Swapping them gives what we want.

Other 2 cases are similar… (Exercise)

