

CSE 331 Floyd Logic

James Wilcox & Kevin Zatloukal

Reasoning So Far

- Code so far made up of three elements
 - straight-line code
 - conditionals
 - recursion
- Know how to reason (think) about these already
 - saw the first two already
 - we reasoned about recursion in math, but this can be done in code also

our code is direct translation of math, so easy to switch between

Consider this code

•••

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
    if (a >= 0n && b >= 0n) {
        const L: List = cons(a, cons(b, nil));
        return sum(L);
    }
    find facts by reading along path
    from top to return statement
```

- Known facts include " $a \ge 0$ ", " $b \ge 0$ ", and "L = cons(...)"
- Prove that postcondition holds: "sum(L) ≥ 0 "

```
// @param n a natural number
// @returns n*n
const square = (n: bigint): bigint => {
    if (n === 0n) {
        return 0n;
    } else {
        return square(n - 1n) + n + n - 1n;
    }
};
```

- How do we check correctness?
- Option 1: translate this to math

 $\begin{aligned} & \text{func square}(0) & := 0 \\ & \text{square}(n+1) := \text{square}(n) + 2(n+1) - 1 & \text{for any } n : \mathbb{N} \end{aligned}$

```
// @param n a natural number
// @returns n*n
const square = (n: bigint): bigint => { ... };
```

func square(0) := 0 square(n+1) := square(n) + 2(n+1) - 1 for any n : \mathbb{N}

- **Prove that** square(n) = n^2 for any n : N
- Structural induction requires proving two implications
 - base case: prove square(0) = 0^2
 - inductive step: prove square $(n+1) = (n+1)^2$ can use the fact that square $(n) = n^2$

```
// @param n a natural number
// @returns n*n
const square = (n: bigint): bigint => {
    if (n === 0n) {
        return 0n;
    } else {
        return square(n - 1n) + n + n - 1n;
    }
};
```

- Option 2: reason directly about the code
- Known fact at top return: n = 0

square(0) = 0 (code)
=
$$0^2$$

```
// @param n a natural number
// @returns n*n
const square = (n: bigint): bigint => {
    if (n === 0n) {
        return 0n;
    } else {
        return square(n - 1n) + n + n - 1n;
    }
};
why is it okay to assume square
    is correct when we're checking it?
```

• Known fact at bottom return: n > 0

Inductive Hypothesis

square(n) = square(n - 1) + 2n - 1 (code)
=
$$(n - 1)^2 + 2n - 1$$
 spec of square
= $n^2 - 2n + 1 + 2n + 1$
= n^2

Reasoning So Far

- Code so far made up of three elements
 - straight-line code
 - conditionals
 - structural recursion
- Any¹ program can be written with just these
 - we could stop the course right here!
- For performance reasons, we often use more
 - this week: mutation of local variables
 - later: mutation of arrays and heap data

Brief History of Software

Computers used to be very slow

my first computer had 64k of memory

- Software had to be extremely efficient
 - loops, mutation all over the place
 - very hard to write correctly, so it did very little

Brief History of Software

- Computers used to be very slow
 - software had to be extremely efficient
- Today, programmers are the scarcest resource
 - we have enormous computing resources
- Anti-pattern: favoring efficiency over correctness
 - programmers overestimate importance of efficiency
 "programmers are notoriously bad" at guessing what is slow B. Liskov
 "premature optimization is the root of all evil" D. Knuth
 - programmers are overconfident about correctness
 routinely takes 3x as long as expected to get it right

"Programmers overestimate the importance of **efficiency** and underestimate the difficulty of **correctness**."

- Class slogan #3

Correctness Levels

Description	Testing	Tools	Reasoning
small # of inputs	exhaustive		
straight from spec	heuristics	type checking	code reviews
no mutation	u	libraries	calculation induction
local variable mutation	и	и	Floyd logic
array mutation	u	u	?
heap state mutation	u	u	?

Consider this code

•••

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  if (a >= 0n && b >= 0n) {
    a = a - 1n;
    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }
```

- Facts no longer hold throughout the function
- When we state a fact, we have to say <u>where</u> it holds

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
    if (a >= 0n && b >= 0n) {
        {{a \ge 0}}
        a = a - 1n;
        {{a \ge -1}}
        const L: List = cons(a, cons(b, nil));
        return sum(L);
    }
```

- When we state a fact, we have to say where it holds
- {{ .. }} notation indicates facts true at that point
 - cannot assume those are true anywhere else

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
    if (a >= 0n && b >= 0n) {
        {{a \ge 0}}
        a = a - 1n;
        {{a \ge -1}}
        const L: List = cons(a, cons(b, nil));
        return sum(L);
    }
```

- There are <u>mechanical</u> tools for moving facts around
 - "forward reasoning" says how they change as we move down
 - "backward reasoning" says how they change as we move up

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
    if (a >= 0n && b >= 0n) {
        {{a \ge 0}}
        a = a - 1n;
        {{a \ge -1}}
        const L: List = cons(a, cons(b, nil));
        return sum(L);
    }
```

- Professionals are insanely good at forward reasoning
 - "programmers are the Olympic athletes of forward reasoning"
 - you'll have an edge by learning backward reasoning too

Floyd Logic

- Invented by Robert Floyd and Sir Anthony Hoare
 - Floyd won the Turing award in 1978
 - Hoare won the Turing award in 1980

Robert Floyd

Tony Hoare

- The program state is the values of the variables
- An assertion (in {{ .. }}) is a T/F claim about the state
 - an assertion "holds" if the claim is true
 - assertions are math not code (we do our reasoning in math)
- Most important assertions:
 - precondition: claim about the state when the function starts
 - postcondition: claim about the state when the function ends

Hoare Triples

• A Hoare triple has two assertions and some code

{{ P }} s {{ Q }}

- P is the precondition, \boldsymbol{Q} is the postcondition
- $\, {\rm S}$ is the code
- Triple is "valid" if the code is correct:
 - S takes any state satisfying P into a state satisfying Q does not matter what the code does if P does not hold initially
 - otherwise, the triple is invalid

Correctness Example

```
/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: bigint): bigint => {
    n = n + 3n;
    return n * n;
};
```

• Check that value returned, $m = n^2$, satisfies $m \ge 10$

Correctness Example

```
/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: bigint): bigint => {
    {{n ≥ 1}}
    n = n + 3n;
    {{n<sup>2</sup> ≥ 10}}
    return n * n;
};
```

- Precondition and postcondition come from spec
- Remains to check that the triple is valid

• Code could be empty:

{{ P }} {{ Q }}

- When is such a triple valid?
 - valid iff P implies Q
 - we already know how to check validity in this case:
 prove each fact in Q by calculation, using facts from P

• Code could be empty:

{{ $a \ge 0, b \ge 0, L = cons(a, cons(b, nil))$ }} {{ $sum(L) \ge 0$ }}

• Check that P implies Q by calculation

sum(L)= sum(cons(a, cons(b, nil)))since L = ...= a + sum(cons(b, nil))def of sum= a + b + sum(nil)def of sum= a + bdef of sum
$$\geq 0 + b$$
since a ≥ 0 $\geq 0 + 0$ since b ≥ 0 = 0since b ≥ 0

Stronger Assertions vs Specifications

• Assertion is stronger iff it holds in a subset of states

- Stronger assertion implies the weaker one
 - stronger is a synonym for "implies"
 - weaker is a synonym for "is implied by"

Stronger Assertions vs Specifications

• Assertion is stronger iff it holds in a subset of states

- Weakest possible assertion is "true" (all states)
 - an empty assertion ("") also means "true"
- **Strongest** possible assertion is "false" (no states!)

Hoare Triples with Multiple Lines of Code

• Code with multiple lines:

- Valid iff there exists an R making both triples valid – i.e., {{ P }} S {{ R }} is valid and {{ R }} T {{ Q }} is valid
- Will see next how to put these to good use...

- Forward / backward reasoning fill in assertions
 - mechanically create valid triples
- Forward reasoning fills in postcondition

{{ P }} s {{ _}}

- gives strongest postcondition making the triple valid
- Backward reasoning fills in precondition
 {{ ___}} s {{ Q }}
 - gives weakest precondition making the triple valid

Correctness via Forward Reasoning

• Apply forward reasoning

{{ P }}
s {{ P }}
{{ Q }}
}
{{ P }}
s {{ P }}
s {{ N }
1
{{ Q }}
}
2

- first triple is always valid
- only need to check second triple

just requires proving an implication (since no code is present)

- If second triple is invalid, the code is incorrect
 - true because R is the strongest assertion possible here

Correctness via Backward Reasoning

Apply backward reasoning

 $\{ \{ P \} \} \\ s \\ \{ \{ Q \} \} \\$

- second triple is always valid
- only need to check first triple

just requires proving an implication (since no code is present)

- If first triple is invalid, the code is **incorrect**
 - true because **R** is the weakest assertion possible here

Mechanical Reasoning Tools

- Forward / backward reasoning fill in assertions
 - mechanically create valid triples
- Reduce correctness to proving implications
 - this was already true for functional code
 - will soon have the same for imperative code
- Implication will be false if the code is **incorrect**
 - reasoning can verify correct code
 - reasoning will never accept incorrect code

• Can use both types of reasoning on longer code

$$\left\{ \left\{ \begin{array}{c} P \\ S \\ S \\ \left\{ \left\{ R_{1} \right\} \right\} \\ \left\{ \left\{ R_{2} \right\} \right\} \\ T \\ \left\{ \left\{ Q \right\} \right\} \end{array} \right\} \right\} \right] 2$$

- first and third triples is always valid
- only need to check second triple

verify that $R_1 \mbox{ implies } R_2$

Forward & Backward Reasoning

Forward and Backward Reasoning

- Imperative code made up of
 - assignments (mutation)
 - conditionals
 - loops
- Anything can be rewritten with just these
- We will learn forward / backward rules to handle them
 - will also learn a rule for function calls
 - once we have those, we are done

Example Forward Reasoning through Assignments

• What do we know is true after x = 17?

want the strongest postcondition (most precise)

Example Forward Reasoning through Assignments

- What do we know is true after x = 17?
 - w was not changed, so w > 0 is still true
 - x is now 17
- What do we know is true after y = 42?
• What do we know is true after y = 42?

 $- \ w$ and x were not changed, so previous facts still true

- y **is now** 42
- What do we know is true after z = w + x + y?

- What do we know is true after z = w + x + y?
 - $-\ w$, x, and y were not changed, so previous facts still true
 - -z is now w + x + y
- Could also write z = w + 59 (since x = 17 and y = 42)

• Could write z = w + 59, but <u>do not</u> write z > 59 !

- that is true since w > 0, but...

- Could write z = w + 59, but <u>do not</u> write z > 59 !
 - that is true since w > 0, but...

$$\{ \{ w > 0 \} \} \\ x = 17n; \\ \{ \{ w > 0 \text{ and } x = 17 \} \} \\ y = 42n; \\ \{ \{ w > 0 \text{ and } x = 17 \text{ and } y = 42 \} \} \\ z = w + x + y; \\ \{ \{ w > 0 \text{ and } x = 17 \text{ and } y = 42 \text{ and } z = w + x + y \} \}$$

- Could write z = w + 59, but <u>do not</u> write z > 59 !
 - that is true since w > 0, but...
 - that is <u>not</u> the strongest postcondition
 correctness check could now fail even if the code is right

```
// @param w an integer > 0
// @returns an integer z > 59
const f = (w: bigint): bigint => {
   const x = 17n;
   const y = 42n;
   const z = w + x + y;
   return z;
};
```

• Let's check correctness using Floyd logic...

```
// @param w an integer > 0
// @returns an integer z > 59
const f = (w: bigint): bigint => {
    {{w > 0}}
    const x = 17n;
    const y = 42n;
    const z = w + x + y;
    {{z > 59}}
    return z;
};
```

• Reason forward...

```
// @param w an integer > 0
// @returns an integer z > 59
const f = (w: bigint): bigint => {
        {{w > 0}}
        const x = 17n;
        const y = 42n;
        const z = w + x + y;
        {{w > 0 and x = 17 and y = 42 and z = w + x + y}}
        {{z > 59}}
        return z;
    };
```

• Check implication:

```
 \begin{array}{lll} z &= w + x + y \\ &= w + 17 + y & \text{since } x = 17 \\ &= w + 59 & \text{since } y = 42 \\ &> 59 & \text{since } w > 0 \end{array}
```

```
// @param w an integer > 0
// @returns an integer z > 59
const f = (w: bigint): bigint => {
   const x = 17n;
   const y = 42n;
   const z = w + x + y;
   return z;
};
find facts by reading along path
from top to return statement
```

- How about if we use our old approach?
- Known facts: w > 0, x = 17, y = 42, and z = w + x + y
- Prove that postcondition holds: z > 59

```
// @param w an integer > 0
// @returns an integer z > 59
const f = (w: bigint): bigint => {
   const x = 17n;
   const y = 42n;
   const z = w + x + y;
   return z;
};
```

- We've been doing forward reasoning all quarter!
 forward reasoning is (only) "and" with *no mutation*
- Line-by-line facts are for "let" (not "const")

- Forward reasoning is trickier with mutation
 - gets harder if we mutate a variable

- Final assertion is not necessarily true
 - w = x + y is true with their old values, not the new ones
 - changing the value of "x" can invalidate facts about x facts refer to the old value, not the new value
 - avoid this by using different names for old and new values

- Fix this by giving new names to initial values
 - will use "x" and "y" to refer to $\underline{\text{current}}$ values
 - can use " x_0 " and " y_0 " (or other subscripts) for earlier values rewrite existing facts to use the names for earlier values

- Final assertion is now accurate
 - w is equal to the sum of the initial values of \boldsymbol{x} and \boldsymbol{y}

• For assignments, general forward reasoning rule is

```
{{ P}}
x = y;
{{ P[x \mapsto x_0] and x = y[x \mapsto x_0] }}
```

- replace all "x"s in P and y with " x_0 "s (or any *new* name)
- This process can be simplified in many cases
 - no need for x_0 if we can write it in terms of new value
 - e.g., if " $x = x_0 + 1$ ", then " $x_0 = x 1$ "
 - assertions will be easier to read without old values
 (Technically, this is weakening, but it's usually fine
 Postconditions usually do not refer to old values of variables.)

• For assignments, general forward reasoning rule is

$$\{\{P\}\}\} \\ x = y; \\ \{\{P[x \mapsto x_0] \text{ and } x = y[x \mapsto x_0]\}\}\}$$

 \boldsymbol{x}_0 is any new variable name

• If $x_0 = f(x)$, then we can simplify this to

$$\{\{P\}\}\}$$

$$x = ... x ...;$$

$$\{\{P[x \mapsto f(x)]\}\}$$
no need for, e.g., "and x = x_0 + 1"

- if assignment is " $x = x_0 + 1$ ", then " $x_0 = x 1$ "
- if assignment is " $x = 2x_0$ ", then " $x_0 = x/2$ "
- does not work for integer division (an un-invertible operation)

Correctness Example by Forward Reasoning

```
/**
  * @param n an integer with n >= 1
  * @returns an integer m with m \ge 10
  */
const f = (n: bigint): bigint => {
  \{\{n \ge 1\}\}
 \begin{array}{l} n = n + 3n; \\ n = n + 3n; \\ n = n_0 + 3 \text{ means } n - 3 = n_0 \\ \left\{ \left\{ n - 3 \ge 1 \right\} \right\} \\ \left\{ \left\{ n^2 \ge 10 \right\} \right\} \end{array} \right] \mbox{ check this implication} 
   return n * n;
};
n^2 \geq 4^2
                                since n - 3 \ge 1 (i.e., n \ge 4)
      = 16
                                                 This is the preferred approach.
      > 10
                                                Avoid subscripts when possible.
```

• What must be true before z = w + x + y so z < 0?

want the weakest postcondition (most allowed states)

Example Backward Reasoning with Assignments

- What must be true before z = w + x + y so z < 0? - must have w + x + y < 0 beforehand
- What must be true before y = 42 for w + x + y < 0?

Example Backward Reasoning with Assignments

- What must be true before y = 42 for w + x + y < 0? - must have w + x + 42 < 0 beforehand
- What must be true before x = 17 for w + x + 42 < 0?

Example Backward Reasoning with Assignments

- What must be true before x = 17 for w + x + 42 < 0? - must have w + 59 < 0 beforehand
- All we did was <u>substitute</u> right side for the left side
 - e.g., substitute "w + x + y" for "z" in "z < 0"
 - e.g., substitute "42" for "y" in "w + x + y < 0"
 - e.g., substitute "17" for "x" in "w + x + 42 < 0"

• For assignments, backward reasoning is substitution

 $\{ \{ Q[x \mapsto y] \} \} \\ x = y; \\ \{ \{ Q \} \}$

- just replace all the "x"s with "y"s
- we will denote this substitution by $Q[x \mapsto y]$
- Mechanically simpler than forward reasoning
 - no need for subscripts

Correctness Example by Forward Reasoning

```
/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: bigint): bigint => {
    {{n ≥ 1}}
    n = n + 3n;
    {{n<sup>2</sup> ≥ 10}}
    return n * n;
};
```

• Code is correct if this triple is valid...

Correctness Example by Backward Reasoning

```
/**
  * @param n an integer with n >= 1
  * @returns an integer m with m \ge 10
  */
const f = (n: bigint): bigint => {
 \{\{n \ge 1\}\} \\ \{\{(n+3)^2 \ge 10\}\} \ ] \ \text{check this implication} \\ n = n + 3n; \\ \{\{n^2 \ge 10\}\} \ \} 
   return n * n;
};
(n+3)^2 \ge (1+3)^2
                                     since n \ge 1
           = 16
           > 10
```

Conditionals

Conditionals in Functional Programming

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  if (a >= 0n && b >= 0n) {
    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }
...
```

- Prior reasoning also included conditionals
 - what does that look like in Floyd logic?

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
    {{}}}
    if (a >= 0n && b >= 0n) {
        {{a ≥ 0 and b ≥ 0}}
        const L: List = cons(a, cons(b, nil));
        return sum(L);
    }
```

- Conditionals introduce extra facts in forward reasoning
 - simple "and" case since nothing is mutated

```
// Returns an integer m with m > n
const g = (n: bigint): bigint => {
    let m;
    if (n >= 0n) {
        m = 2n * n + 1n;
    } else {
        m = 0n;
    }
    return m;
}
```

- Code like this was impossible without mutation
 - cannot write to a "const" after its declaration
- How do we handle it now?

```
// Returns an integer m with m > n
const g = (n: bigint): bigint => {
    let m;
    if (n >= 0n) {
        m = 2n * n + 1n;
    } else {
        m = 0n;
    }
    return m;
}
```

- Reason separately about each path to a return
 - handle each path the same as before
 - but now there can be multiple paths to one **return**

```
// Returns an integer m with m > n
const g = (n: bigint): bigint => {
    {{}}
    let m;
    if (n >= 0n) {
        m = 2n * n + 1n;
    } else {
        m = 0n;
    }
    {{(m > n}}
    return m;
}
```

• Check correctness path through "then" branch

```
// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{}}
  let m;
  if (n >= 0n) {
 \downarrow \{\{n \ge 0\}\}
    m = 2n * n + 1n;
  } else {
    m = 0n;
  }
  \{\{m > n\}\}
  return m;
}
```

```
// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{}}
  let m;
  if (n >= 0n) {
  \{\{n \ge 0\}\} \\ m = 2n * n + 1n; 
    \{\{n \ge 0 \text{ and } m = 2n + 1\}\}
  } else {
    m = 0n;
  }
  \{\{m > n\}\}
  return m;
}
```

```
// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{}}
  let m;
  if (n >= 0n) {
   \{\{ n \ge 0 \}\}
   m = 2n * n + 1n;
    \{\{ n \ge 0 \text{ and } m = 2n + 1\}\}
  } else {
 m = 0n;
  }
  \{\{n \ge 0 \text{ and } m = 2n + 1\}\} m = 2n+1
  \{\{m > n\}\}
                                     > 2n since 1 > 0
                                     \geq n since n \geq 0
  return m;
}
```

```
// Returns an integer m with m > n
const q = (n: bigint): bigint => {
  {{}}
  let m;
  if (n >= 0n) {
   m = 2n * n + 1n;
  } else {
    m = 0n;
  \{\{n \ge 0 \text{ and } m = 2n + 1\}\}
  \{\{m > n\}\}
  return m;
}
```

- Note: no mutation, so we can do this in our head
 - read along the path, and collect all the facts

```
// Returns an integer m with m > n
const q = (n: bigint): bigint => {
  {{}}
  let m;
  if (n >= 0n) {
   m = 2n * n + 1n;
  } else {
    m = 0n;
  \{\{n < 0 \text{ and } m = 0\}\}
                           m = 0
  \{\{m > n\}\}
                                 > n since 0 > n
  return m;
}
```

- Check correctness path through "else" branch
 - note: no mutation, so we can do this in our head

```
// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{}}
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;
  } else {
  m = 0n;
  }
  {{ .
                                                   }}
  \{\{m > n\}\}
  return m;
}
```

• What is true after the either branches?

```
// Returns an integer m with m > n
const q = (n: bigint): bigint => {
  {{}}
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;
  } else {
    m = 0n;
  }
  {{ (n \ge 0 \text{ and } m = 2n + 1) \text{ or } (n < 0 \text{ and } m = 0) }}
  \{\{m > n\}\}
  return m;
}
```

- What is true after the either branches?
 - the "or" means we have to reason by cases anyway!

```
// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{}}
  let m;
  if (n >= 0n) {
     m = 2n * n + 1n;
  } else {
     return On;
  }
  {{ (n \ge 0 \text{ and } m = 2n + 1) \text{ or } (n < 0 \text{ and } ??) }}
  \{\{m > n\}\}
  return m;
}
```

• What is the state after a "return"?
Conditionals in Floyd Logic

```
// Returns an integer m with m > n
const q = (n: bigint): bigint => {
  {{}}
  let m;
  if (n >= 0n) {
     m = 2n * n + 1n;
  } else {
     return On;
  }
  {{ (n \ge 0 \text{ and } m = 2n + 1) \text{ or } (n < 0 \text{ and false}) }}
  \{\{m > n\}\}
                         simplifies to just n \ge 0 and m = 2n + 1
  return m;
}
```

• State after a "return" is false (no states)

Function Calls

Reasoning about Function Calls

// @requires P2 -- preconditions a, b
// @returns x such that R -- conditions on a, b, x
const f = (a: bigint, b: bigint): bigint => {..}

• Forward reasoning rule is

{{ P}}
x = f(a, b);
{{ P[x
$$\mapsto x_0$$
] and R}}

Must also check that P implies P₂

• Backward reasoning rule is

$$\{ \{ Q_1 \text{ and } P_2 \} \} \\ x = f(a, b); \\ \{ \{ Q_1 \text{ and } Q_2 \} \}$$

Must also check that R implies Q₂

 Q_2 is the part of postcondition using $\mbox{``x"}$

Loops

- Assignment and condition reasoning is mechanical
- Loop reasoning <u>cannot</u> be made mechanical
 - no way around this

(**311 alert**: this follows from Rice's Theorem)

- Thankfully, one *extra* bit of information fixes this
 - need to provide a "loop invariant"
 - with the invariant, reasoning is again mechanical

Loop Invariants

• Loop invariant is true every time at the top of the loop

```
{{ Inv: I }}
while (cond) {
    S
}
```

- must be true when we get to the top the first time
- must remain true each time execute S and loop back up
- Use "Inv:" to indicate a loop invariant

otherwise, this only claims to be true the first time at the loop

Loop Invariants

• Loop invariant is true every time at the top of the loop

```
{{ Inv: I }}
while (cond) {
    S
}
```

- must be true 0 times through the loop (at top the first time)
- if true n times through, must be true n+1 times through
- Why do these imply it is always true?
 - follows by structural induction (on \mathbb{N})

```
{{ P }}
{{ Inv: I }}
while (cond) {
    S
}
{{ Q }}
```

- How do we check validity with a loop invariant?
 - intermediate assertion splits into three triples to check

Splits correctness into three parts

- **1.** I holds initially
- 2. S preserves I
- 3. Q holds when loop exits

Splits correctness into three parts

- **1.** I holds initially
- 2. S preserves I
- $\textbf{3.} \quad Q \text{ holds when loop exits}$

Splits correctness into three parts


```
{{ P }}
{{ Inv: I }}
while (cond) {
   S
\{\{Q\}\}
```

Formally, invariant split this into three Hoare triples:

- 1. $\{\{P\}\} \{\{I\}\}$
- 2. {{ I and cond }} **S** {{ I }}
- I holds initially
- S preserves I
- 3. {{ I and not cond }} {{ Q }} Q holds when loop exits

 $\begin{aligned} & \text{func sum-to}(0) & := 0 \\ & \text{sum-to}(n+1) := (n+1) + \text{sum-to}(n) & & \text{for any } n : \mathbb{N} \end{aligned}$

```
{{ }}
let i: bigint = 0n;
let s: bigint = 0n;
{{ Inv: s = sum-to(i) }}
while (i != n) {
    i = i + 1n;
    s = s + i;
  }
{{ s = sum-to(n) }}
```

func sum-to(0) := 0 sum-to(n+1):= (n+1) + sum-to(n) for any n : \mathbb{N}

This loop claims to calculate it as well

```
{{ }}
let i: bigint = 0n;
let s: bigint = 0n;
{{ Inv: s = sum-to(i) }}
while (i != n) {
    i = i + 1n;
    s = s + i;
}
{{ s = sum-to(n) }}
```

Easy to get this wrong!
might be initializing "i" wrong (i = 1?)

- might be exiting at the wrong time (i \neq n-1?)
- might have the assignments in wrong order

- ...

Fact that we need to check 3 implications is a strong indication that more bugs are possible.

 $\begin{aligned} & \text{func sum-to}(0) & := 0 \\ & \text{sum-to}(n+1) := (n+1) + \text{sum-to}(n) & & \text{for any } n : \mathbb{N} \end{aligned}$


```
\begin{aligned} & \text{func sum-to}(0) & := 0 \\ & \text{sum-to}(n+1) := (n+1) + \text{sum-to}(n) & & \text{for any } n : \mathbb{N} \end{aligned}
```

```
\begin{aligned} & \text{func sum-to}(0) & := 0 \\ & \text{sum-to}(n+1) := (n+1) + \text{sum-to}(n) & & \text{for any } n : \mathbb{N} \end{aligned}
```

```
{{ Inv: s = sum-to(i) }}
while (i != n) {
    {{ (i != n) {
        { { (s = sum-to(i) and i ≠ n }}
        i = i + 1n;
        {{ (s = sum-to(i-1) and i-1 ≠ n }}
        s = s + i;
        {{ (s = sum-to(i) }}
    }
}
```

```
func sum-to(0) := 0
sum-to(n+1):= (n+1) + sum-to(n) for any n : \mathbb{N}
```

```
{{ Inv: s = sum-to(i) }}
while (i != n) {
    s = i + sum-to(i-1)
    since s - i = sum-to(i-1)
    def of sum-to
    {{ s = sum-to(i) and i \neq n }}
    i = i + 1n;
    {{ s = sum-to(i-1) and i-1 \neq n }}
    s = s + i;
    {{ s = sum-to(i-1) and i-1 \neq n }}
    {{ s = sum-to(i) }}
}
```

 $\begin{aligned} & \text{func sum-to}(0) & := 0 \\ & \text{sum-to}(n+1) := (n+1) + \text{sum-to}(n) & & \text{for any } n : \mathbb{N} \end{aligned}$

```
{{ Inv: s = sum-to(i) }}
while (i != n) {
    i = i + 1n;
    s = s + i;
  }
{{ s = sum-to(i) and i = n }}
{{ sum-to(n) }}
sum-to(n)
= sum-to(i) since i = n
= s
```

- This analysis does not check that the code terminates
 - it shows that the postcondition holds if the loop exits
 - but we never showed that the loop does exit
- Termination follows from the running time analysis
 - e.g., if the code runs in O(n²) time, then it terminates
 - an infinite loop would be O(infinity)
 - any finite bound on the running time proves it terminates
- Normal to also analyze the running time of our code, and we get termination already from that analysis

Loops & Recursion

Loops and Recursion

- To check a loop, we need a loop invariant
- Where does this come from?
 - part of the algorithm idea / design see 421 for more discussion
 - Inv and the progress step formalize the algorithm idea most programmers can easily formalize an English description (very tricky loops are the exception to this)
- Today, we'll focus on converting *recursion* into a loop
 - HW6 will fit these patterns
 - (more loops later)

• Recursive function to calculate n^2 without multiplying

func square(0) := 0 square(n+1) := square(n) + 2n + 1 for any n : \mathbb{N}

- We already proved that this calculates n²
 we can implement it directly with recursion
- Let's try writing it with a loop instead...

 $\begin{aligned} & \text{func square}(0) & := 0 \\ & \text{square}(n+1) := \text{square}(n) + 2n + 1 & & \text{for any } n : \mathbb{N} \end{aligned}$

- **Loop idea for calculating** square(n):
 - calculate i = 0, 1, 2, ..., n
 - keep track of square(i) in "s" as we go along

i = 0 1 2 ... n s = 0 1 4 ... n^2

• Formalize that idea in the loop invariant

along with the fact that we make progress by advancing i to i+1 each step

func square(0) := 0 square(n+1) := square(n) + 2n + 1 for any n : \mathbb{N}

Loop implementation

```
let i: bigint = 0n;
let s: bigint = 0n;
{{ Inv: s = square(i) }}
while (i != n) {
    s = s + i + i + 1n;
    i = i + 1n;
}
return s;
```

Loop invariant says how i and s relate s holds square(i), whatever i

i starts at 0 and increases to n

Now we can check correctness...

func square(0) := 0 square(n+1) := square(n) + 2n + 1 for any n : \mathbb{N}

```
let i: bigint = 0n;
let s: bigint = 0n;
{{ Inv: s = square(i) }}
while (i != n) {
    s = s + i + i + 1n;
    i = i + 1n;
}
{{ s = square(i) and i = n }}
{{ s = square(i) and i = n }}
{{ s = square(n) }}
square(n)
= square(i) since i = n
= s since s = square(i)
```

```
\begin{aligned} & \text{func square}(0) & := 0 \\ & \text{square}(n+1) := \text{square}(n) + 2n + 1 & & \text{for any } n : \mathbb{N} \end{aligned}
```

```
{{}}
let i: bigint = 0n;
let s: bigint = 0n;
{{ i = 0 and s = 0 }}
{{ [Inv: s = square(i) }}
square(i)
= square(0) since i = 0
def of square
s = s + i + i + 1n;
i = i + 1n;
}
return s;
```

```
\begin{aligned} & \text{func square}(0) & := 0 \\ & \text{square}(n+1) := \text{square}(n) + 2n + 1 & & \text{for any } n : \mathbb{N} \end{aligned}
```

```
{{ Inv: s = square(i) }}
while (i != n) {
    {{ {{ s = square(i) and i ≠ n }}}
    s = s + i + i + 1n;
    i = i + 1n;
    {{ s = square(i) }}
}
return s;
```

func square(0) := 0 square(n+1) := square(n) + 2n + 1 for any n : \mathbb{N}

```
{{ Inv: s = square(i) }}
while (i != n) {
    {{ {{ s = square(i) and i ≠ n }}
    s = s + i + i + 1n;
    {{ s = square(i+1) }}
    i = i + 1n;
    {{ s = square(i+1) }}
    i = square(i) }}
}
return s;
```

 $\begin{aligned} & \text{func square}(0) & := 0 \\ & \text{square}(n+1) := \text{square}(n) + 2n + 1 & & \text{for any } n : \mathbb{N} \end{aligned}$

```
{{ Inv: s = square(i) }}
while (i != n) {
    {{ {{ s = square(i) and i ≠ n }}
    {{ {{ s = square(i) and i ≠ n }}
    {{ s = s + i + i = square(i+1) }}
    s = s + i + i + 1n;
    {{ s = square(i+1) }}
    i = i + 1n;
    {{ s = square(i+1) }}
}
return s;
```

func square(0) := 0 square(n+1) := square(n) + 2n + 1 for any n : \mathbb{N}

```
{{ Inv: s = square(i) }}
while (i != n) {
    {{ {{ s = square(i) and i ≠ n }}
    {{ {{ s = square(i) and i ≠ n }}
    {{ {{ s = square(i+1) }}
    }
    s = s + i + i + 1n;
    {{ s = square(i+1) }}
    i = i + 1n;
    {{ s = square(i+1) }
        s + 2i + 1 = square(i) + 2i + 1 since s = square(i)
    }
        s + 2i + 1 = square(i) + 2i + 1 since s = square(i)
    def of square
return s;
```

"Bottom Up" Loops on Natural Numbers

• Previous examples store function value in a variable

 $\{\{ Inv: s = sum-to(i) \}\}$

{{ **Inv**: s = square(i) }}

- Start with i=0 and work up to i=n
- Call this a "bottom up" implementation
 - evaluates in the same order as recursion
 - from the base case up to the full input

"Bottom Up" Loops on the Natural Numbers

```
func f(0) := ...
f(n+1) := ... f(n) ... for any n : N
```

Can be implemented with a loop like this

```
const f = (n: bigint): bigint => {
  let i: bigint = 0n;
  let s: bigint = "..."; // = f(0)
  {{ Inv: s = f(i) }}
  while (i != n) {
    s = "...f(i) ..."[f(i) ↦ s] // = f(i+1)
    i = i + 1n;
  }
  return s;
};
```

"Bottom Up" Loops on Lists

- Works nicely on $\ensuremath{\mathbb{N}}$
 - numbers are built up from 0 using succ (+1)
 - e.g., build n = 3 up from 0

 $n = 3 \stackrel{+1}{\longleftarrow} 2 \stackrel{+1}{\longleftarrow} 1 \stackrel{+1}{\longleftarrow} 0$

- What about List?
 - lists are built up from nil using cons
 - e.g., build L = cons(1, cons(2, cons(3, nil))) from nil:

$$L = 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow nil$$

"Bottom Up" Loops on Lists?

- What about List?
 - lists are built up from nil using cons
 - e.g., build L = cons(1, cons(2, cons(3, nil))) from nil:

$$L = 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow nil$$

$$L.hd$$

- First step to build L is to build cons(3, nil) from nil
 - how do we know what number to put in front of $\operatorname{nil}\nolimits ?$

3 is all the way at the end of the list!

- how can we fix this?
- reverse the list!

Example "Bottom Up" List Loop

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

- Loop idea for calculating twice(L):
 - store rev(L) in "R"

– watch what happens as we move R forward...
func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

- Loop idea for calculating twice(L):
 - store rev(L) in "R"
 - moving forward in R is moving backward in L...

– as R moves forward, rev(R) remains a prefix of L

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

- Loop idea for calculating twice(L):
 - store rev(L) in "R"
 - moving forward in R is moving backward in L...

- value dropped from R was last(L) = 3

can use it to build cons(3, nil)

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

- Loop idea for calculating twice(L):
 - store rev(L) in "R" initially. move forward to R.tl, etc.
 - add items skipped over by R to the front of "S"

– as R moves forward, S stores a suffix of L $\,$

Formalize that idea as L = concat(rev(R), S)

S rebuilds the list L "bottom up" calculate twice(L) "bottom up" as we go

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

- Loop idea for calculating twice(L):
 - store rev(L) in "R" initially. move forward to R.tl, etc.
 - add items skipped over by R to the front of $\ensuremath{``S"}$

S rebuilds the list L "bottom up"

- calculate twice(S), as we go, in "T"
- Formalize that idea in the loop invariant

L = concat(rev(R), S) and T = twice(S)

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

```
let R: List = rev(L);
let S: List = nil;
let T: List = nil;
{{ Inv: L = concat(rev(R), S) and T = twice(S) }}
while (R.kind !== "nil") {
 T = cons(2n * R.hd, T); Still need to check this.
 S = cons(R.hd, S);
 R = R.tl; Hopefully obvious that it could be wrong.
 (Testing length 0, 1, 2, 3 is not enough!)
}
return T; // = twice(L)
```

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

```
{{ Inv: L = concat(rev(R), S) and T = twice(S) }}
while (R.kind !== "nil") {
   T = cons(2n * R.hd, T);
   S = cons(R.hd, S);
   R = R.tl;
  }
{{ L = concat(rev(R), S) and T = twice(S) and R = nil }}
{{ T = twice(L) }}
return T; // = twice(L)
```

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

• Check that Inv is implies the postcondition:

 $\{ \{ L = concat(rev(R), S) and T = twice(S) and R = nil \} \}$ $\{ \{ T = twice(L) \} \}$ L = concat(rev(R), S) = concat(rev(nil), S) = concat(nil, S) = S T = twice(S) = twice(L) since L = S

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

```
{{}}
let R: List = rev(L);
let S: List = nil;
let T: List = nil;
{{ R = rev(L) and S = nil and T = nil }}
{{ Inv: L = concat(rev(R), S) and T = twice(S) }}
while (R.kind !== "nil") {
    T = cons(2n * R.hd, T);
    S = cons(R.hd, S);
    R = R.tl;
}
```

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

• Check that Inv is true initially:

```
\{\{R = rev(L) \text{ and } S = nil \text{ and } T = nil \}\}
{{ Inv: L = concat(rev(R), S) and T = twice(S) }}
concat(rev(R), S)
 = concat(rev(rev(L)), S)
                                   since R = rev(L)
 = concat(L, S)
                                   Lemma 3
                                   since S = nil
 = concat(L, nil)
 = L
                                   Lemma 2
twice(S)
 = twice(nil)
                                   since S = nil
                                   def of twice
 = nil
 = T
                                   since T = nil
```

```
{{ Inv: L = concat(rev(R), S) and T = twice(S) }}
while (R.kind !== "nil") {
    {{ L = concat(rev(R), S) and T = twice(S) and R ≠ nil }}
    T = cons(2n * R.hd, T);
    S = cons(R.hd, S);
    R = R.tl;
    {{ L = concat(rev(R), S) and T = twice(S) }}
}
```

```
{{ Inv: L = concat(rev(R), S) and T = twice(S) }}
while (R.kind !== "nil") {
    {{ L = concat(rev(R), S) and T = twice(S) and R ≠ nil }}
    T = cons (2n * R.hd, T);
    {{ L = concat(rev(R.tl), cons(R.hd, S)) and T = twice(S) }}
    S = cons (R.hd, S);
    {{ L = concat(rev(R.tl), S) and T = twice(S) }}
    R = R.tl;
    {{ L = concat(rev(R), S) and T = twice(S) }}
}
```

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

• Check that Inv is preserved by the loop body:

 $\{ \{ L = concat(rev(R), S) \text{ and } T = twice(S) \text{ and } R \neq nil \} \}$ $\{ \{ L = concat(rev(R.tl), cons(R.hd, S)) \text{ and } cons(2 \cdot R.hd, T) = twice(cons(R.hd, S)) \} \}$

twice(cons(R.hd, S))
= cons(2 R.hd, twice(S)) def of twice
= cons(2 R.hd, T) since T = twice(S)

Note that $R \neq nil$ means R = cons(R.hd, R.tl)

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : Z and L : List

• Check that Inv is preserved by the loop body:

 $\{ \{ L = concat(rev(R), S) \text{ and } T = twice(S) \text{ and } R \neq nil \} \}$ $\{ \{ L = concat(rev(R.tl), cons(R.hd, S)) \text{ and } cons(2 \cdot R.hd, T) = twice(cons(R.hd, S)) \} \}$

 $\begin{array}{ll} L &= \operatorname{concat}(\operatorname{rev}(R), S) \\ &= \operatorname{concat}(\operatorname{rev}(\operatorname{cons}(R.hd, R.tl)), S) \\ &= \operatorname{concat}(\operatorname{concat}(\operatorname{rev}(R.tl), \operatorname{cons}(R.hd, \operatorname{nil})), S) \\ &= \operatorname{concat}(\operatorname{rev}(R.tl), \operatorname{concat}(\operatorname{cons}(R.hd, \operatorname{nil}), S)) \\ &= \operatorname{concat}(\operatorname{rev}(R.tl), \operatorname{cons}(R.hd, \operatorname{concat}(\operatorname{nil}, S)) \\ &= \operatorname{concat}(\operatorname{rev}(R.tl), \operatorname{cons}(R.hd, S)) \\ \end{array} \begin{array}{ll} \text{def of rev} \\ \text{Lemma 2} \\ \text{def of concat} \\ \text{def of concat} \\ \text{def of concat} \\ \end{array} \end{array}$

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

• This loop claims to calculate twice(L)

```
let R: List = rev(L);
let S: List = nil;
let T: List = nil;
{{ Inv: L = concat(rev(R), S) and T = twice(S) }}
while (R.kind !== "nil") {
  T = cons(2n * R.hd, T);
  S = cons(R.hd, S);
  R = R.tl;
}
return T; // = twice(L)
```

"S" is unused! We could remove it.

"S" is useful for proving correctness but it is not needed at run-time. (Example of a "ghost" variable.)

"Bottom Up" Loops on Lists

func f(nil) := ... f(cons(x, L)) := ... f(L) ...

for any $x : \mathbb{Z}$ and L : List

Can be implemented with a loop like this

```
const f = (L: List): List => {
  let R: List = rev(L);
  let S: List = nil;
  let T: List = ...; // = f(nil)
  {{ Inv: L = concat(rev(R), S) and T = f(S) }}
  while (R.kind !== "nil") {
    T = "...f(L) ..."[f(L) ↦ T]
    S = cons(R.hd, S);
    R = R.tl;
  }
  return T; // = f(L)
};
```

Tail Recursion

func twice(nil) := nil
twice(cons(x, L)) := cons(2x, twice(L)) for any x : \mathbb{Z} and L : List

- **To calculate** twice(cons(x, L)):
 - recursively calculate S = twice(L)
 - when that returns, construct and return cons(2x, S)
- Not all functions require work *after* recursion:

func rev-acc(nil, R):= Rfor any R : Listrev-acc(cons(x, L), R):= rev-acc(L, cons(x, R))for any x : \mathbb{Z} andany L, R : List

- such functions are called "tail recursive"

func rev-acc(nil, R) := R
rev-acc(cons(x, L), R) := rev-acc(L, cons(x, R))

- Tail recursion can be implemented top-down
 - no need to reverse the list

func rev-acc(nil, R) := R
rev-acc(cons(x, L), R) := rev-acc(L, cons(x, R))

Check that the postcondition holds upon exit:

func rev-acc(nil, R) := R
rev-acc(cons(x, L), R) := rev-acc(L, cons(x, R))

Check that the postcondition holds upon exit:

```
\{\{ rev-acc(S_0, R_0) = rev-acc(S, R) and S = nil \}\}
\{\{ R = rev-acc(S_0, R_0) \}\}
rev-acc(S_0, R_0)
= rev-acc(S, R)
= rev-acc(nil, R)
= R
def of rev-acc
```

func rev-acc(nil, R) := R
rev-acc(cons(x, L), R) := rev-acc(L, cons(x, R))

• Check that Inv is preserved by the loop body:

```
{{ Inv: rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S, R) }}
while (S.kind !== "nil") {
    {{ rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S, R) and S ≠ nil }}
    R = cons(S.hd, R);
    S = S.tl;
    {{ rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S, R) }}
}
```

func rev-acc(nil, R) := R
rev-acc(cons(x, L), R) := rev-acc(L, cons(x, R))

• Check that Inv is preserved by the loop body:

```
{{ Inv: rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S, R) }}
while (S.kind !== "nil") {
    {{ rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S, R) and S ≠ nil }}
    R = cons(S.hd, R);
    {{ rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S.tl, R) }}
    S = S.tl;
    {{ rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S, R) }}
}
```

func rev-acc(nil, R) := R
rev-acc(cons(x, L), R) := rev-acc(L, cons(x, R))

• Check that Inv is preserved by the loop body:

```
{{ Inv: rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev_acc(S, R) }}
while (S.kind !== "nil") {
    {{ rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S, R) and S \neq nil }}
    {{ rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S.tl, cons(S.hd, R)) }}
    R = cons(S.hd, R);
    {{ rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S.tl, R) }}
    S = S.tl;
    {{ rev-acc(S<sub>0</sub>, R<sub>0</sub>) = rev-acc(S, R) }}
}
```

func rev-acc(nil, R) := R
rev-acc(cons(x, L), R) := rev-acc(L, cons(x, R))

• Check that Inv is preserved by the loop body:

{{ rev-acc(S_0, R_0) = rev-acc(S, R) and $S \neq nil$ }} {{ rev-acc(S_0, R_0) = rev-acc(S.tl, cons(S.hd, R)) }}

rev-acc(S.tl, cons(S.hd, R)) = rev-acc(cons(S.hd, S.tl), R) = rev-acc(S, R) = rev-acc(S₀, R₀)

def of rev-acc since $S \neq nil$ since rev-acc(S, R) = rev-acc(S₀, R₀)

Tail Recursion Elimination

- Most functional languages eliminate tail recursion
 - acts like a loop at run-time
 - true of JavaScript as well
- Alternatives for reducing space usage:
 - **1.** Find a loop that implements it

check correctness with Floyd logic

2. Find an equivalent tail-recursive function check equivalence with structural induction