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Reasoning So Far

• Code so far made up of three elements
– straight-line code
– conditionals
– recursion

• Know how to reason (think) about these already
– saw the first two already
– we reasoned about recursion in math,

but this can be done in code also
our code is direct translation of math, so easy to switch between



Recall: Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  if (a >= 0n && b >= 0n) {
    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }

  …

• Known facts include “a	≥	0”, “b	≥	0”, and “L	=	cons(…)”

• Prove that postcondition holds: “sum(L)	≥	0”

find facts by reading along path 
from top to return statement



// @param n a natural number
// @returns n*n
const square = (n: bigint): bigint => {
  if (n === 0n) {
    return 0n;
  } else {
    return square(n – 1n) + n + n – 1n;
  }
};

• How do we check correctness?

• Option 1: translate this to math

Reasoning About Recursion

func	square(0)	 :=		0	
	 square(n+1)	 :=	square(n)	+	2(n+1)	–	1	 	 for	any	n	:	ℕ



// @param n a natural number
// @returns n*n
const square = (n: bigint): bigint => { … };

• Prove that square(n)	=	n2 for any n	:	ℕ

• Structural induction requires proving two implications
– base case: prove square(0)	=	02

– inductive step: prove square(n+1)	=	(n+1)2
can use the fact that square(n)	=	n2

Reasoning About Recursion

func	square(0)	 :=		0	
	 square(n+1)	 :=	square(n)	+	2(n+1)	–	1	 	 for	any	n	:	ℕ



// @param n a natural number
// @returns n*n
const square = (n: bigint): bigint => {
  if (n === 0n) {
    return 0n;
  } else {
    return square(n – 1n) + n + n – 1n;
  }
};

• Option 2: reason directly about the code

• Known fact at top return: n	=	0
square(0)	 =	0	 	 	 	 	 (code)
	 	 	 =	02

Reasoning About Recursion



// @param n a natural number
// @returns n*n
const square = (n: bigint): bigint => {
  if (n === 0n) {
    return 0n;
  } else {
    return square(n – 1n) + n + n – 1n;
  }
};

• Known fact at bottom return: n	>	0
square(n)	 =	square(n	–	1)	+	2n	–	1	 	 (code)
	 	 	 =	(n	–	1)2	+	2n	–	1	 	 	 spec of square
	 	 	 =	n2	–	2n	+	1	+	2n	+	1	
	 	 	 =	n2

Reasoning About Recursion

Inductive Hypothesis

why is it okay to assume square
is correct when we’re checking it?



Reasoning So Far

• Code so far made up of three elements
– straight-line code
– conditionals
– structural recursion

• Any1 program can be written with just these
– we could stop the course right here!

• For performance reasons, we often use more
– this week: mutation of local variables
– later: mutation of arrays and heap data

1 only exception is code with infinite loops



Brief History of Software

• Computers used to be very slow
my first computer had 64k of memory

• Software had to be extremely efficient
– loops, mutation all over the place
– very hard to write correctly, so it did very little



Brief History of Software

• Computers used to be very slow
– software had to be extremely efficient

• Today, programmers are the scarcest resource
– we have enormous computing resources

•  Anti-pattern: favoring efficiency over correctness
– programmers overestimate importance of efficiency

“programmers are notoriously bad” at guessing what is slow — B. Liskov
“premature optimization is the root of all evil” — D. Knuth

– programmers are overconfident about correctness
routinely takes 3x as long as expected to get it right



“Programmers overestimate the importance of efficiency
                and underestimate the difficulty of correctness.”

— Class slogan #3



Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

straight from spec heuristics type checking code reviews

no mutation “ libraries calculation
induction

local variable mutation “ “ Floyd logic

array mutation “ “ ?

heap state mutation “ “ ?



Recall: Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  if (a >= 0n && b >= 0n) {
    a = a – 1n;

    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }
  …

• Facts no longer hold throughout the function

• When we state a fact, we have to say where it holds

a	≥	0

a	≥	0? No!



Recall: Finding Facts at a Return Statement

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  if (a >= 0n && b >= 0n) {
    {{	a	≥	0	}}
    a = a – 1n;

    {{	a	≥	–1	}}
    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }
   

• When we state a fact, we have to say where it holds

•  {{	..	}} notation indicates facts true at that point
– cannot assume those are true anywhere else



Recall: Finding Facts at a Return Statement

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  if (a >= 0n && b >= 0n) {
    {{	a	≥	0	}}
    a = a – 1n;

    {{	a	≥	–1	}}
    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }

• There are mechanical tools for moving facts around
– “forward reasoning” says how they change as we move down
– “backward reasoning” says how they change as we move up



Recall: Finding Facts at a Return Statement

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  if (a >= 0n && b >= 0n) {
    {{	a	≥	0	}}
    a = a – 1n;

    {{	a	≥	–1	}}
    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }

• Professionals are insanely good at forward reasoning
– “programmers are the Olympic athletes of forward reasoning”
– you’ll have an edge by learning backward reasoning too



Floyd Logic



Floyd Logic

• Invented by Robert Floyd and Sir Anthony Hoare
– Floyd won the Turing award in 1978
– Hoare won the Turing award in 1980

picture from Wikipedia

Tony HoareRobert Floyd

By%20https:/amturing.acm.org/award_winners/floyd_3720707.cfm,%20Fair%20use,%20https:/en.wikipedia.org/w/index.php?curid=59539154


Floyd Logic Terminology

• The program state is the values of the variables

• An assertion (in {{ .. }}) is a T/F claim about the state
– an assertion “holds” if the claim is true
– assertions are math not code

(we do our reasoning in math)

• Most important assertions:
– precondition: claim about the state when the function starts
– postcondition: claim about the state when the function ends



Hoare Triples

• A Hoare triple has two assertions and some code

	 	 {{	P	}}
	 	 				S	
	 	 {{	Q	}}

– P is the precondition, Q is the postcondition
– S is the code

• Triple is “valid” if the code is correct:
– S takes any state satisfying P into a state satisfying Q

does not matter what the code does if P does not hold initially

– otherwise, the triple is invalid



Correctness Example

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: bigint): bigint => {
  n = n + 3n;

  return n * n;
};

• Check that value returned, m	=	n2, satisfies m	≥	10



Correctness Example

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: bigint): bigint => {
  {{	n	≥	1	}}
  n = n + 3n;

  {{	n2	≥	10	}}
  return n * n;
};

• Precondition and postcondition come from spec

• Remains to check that the triple is valid



Hoare Triples with No Code

• Code could be empty:

	 	 {{	P	}}
	 	 {{	Q	}}

• When is such a triple valid?
– valid iff P implies Q
– we already know how to check validity in this case:

prove each fact in Q by calculation, using facts from P



Hoare Triples with No Code

• Code could be empty:

	 	 {{	a	≥	0,		b	≥	0,		L	=	cons(a,	cons(b,	nil))	}}
	 	 {{	sum(L)	≥	0	}}

• Check that P implies Q by calculation

sum(L)	 =	sum(cons(a,	cons(b,	nil)))	 	 	 since	L	=	…
	 	 =	a	+	sum(cons(b,	nil))	 	 	 	 def	of	sum
	 	 =	a	+	b	+	sum(nil)	 	 	 	 	 def	of	sum
	 	 =	a	+	b	 	 	 	 	 	 	 	 def	of	sum
	 	 ≥	0	+	b	 	 	 	 	 	 	 	 since	a	≥	0
	 	 ≥	0	+	0	 	 	 	 	 	 	 	 since	b	≥	0
	 	 =	0



Stronger Assertions vs Specifications

•  Assertion is stronger iff it holds in a subset of states

•  Stronger assertion implies the weaker one
– stronger is a synonym for “implies”
– weaker is a synonym for “is implied by”

Q2Q1



Stronger Assertions vs Specifications

•  Assertion is stronger iff it holds in a subset of states

•  Weakest possible assertion is “true” (all states)
– an empty assertion (“”) also means “true”

•  Strongest possible assertion is “false” (no states!)

Q2Q1



Hoare Triples with Multiple Lines of Code

• Code with multiple lines:

	 	 {{	P	}}
	 	 				S
	 	 				T
	 	 {{	Q	}}

• Valid iff there exists an R making both triples valid
– i.e., {{	P	}}	S	{{	R	}} is valid and {{	R	}}	T	{{	Q	}} is valid

• Will see next how to put these to good use…

{{	P	}}
				S
{{	R	}}
				T
{{	Q	}}



Mechanical Reasoning Tools

• Forward / backward reasoning fill in assertions
– mechanically create valid triples

•  Forward reasoning fills in postcondition

	 	 {{	P	}}		S		{{	___	}}

– gives strongest postcondition making the triple valid

•  Backward reasoning fills in precondition

	 	 {{	___	}}		S		{{	Q	}}

– gives weakest precondition making the triple valid



Correctness via Forward Reasoning

• Apply forward reasoning

{{	P	}}	 	 	 	 	 {{	P	}}
				S		 	 	 	 	 				S
{{	Q	}}		 	 	 	 {{	R	}}
	 	 	 	 	 	 {{	Q	}}

– first triple is always valid
– only need to check second triple

just requires proving an implication (since no code is present)

• If second triple is invalid, the code is incorrect
– true because R is the strongest assertion possible here

2

1



Correctness via Backward Reasoning

• Apply backward reasoning

{{	P	}}	 	 	 	 	 {{	P	}}
				S 	 	 	 	 {{	R	}}
{{	Q	}}		 	 	 	 				S
	 	 	 	 	 	 {{	Q	}}

– second triple is always valid
– only need to check first triple

just requires proving an implication (since no code is present)

• If first triple is invalid, the code is incorrect
– true because R is the weakest assertion possible here

1

2



Mechanical Reasoning Tools

• Forward / backward reasoning fill in assertions
– mechanically create valid triples

• Reduce correctness to proving implications
– this was already true for functional code
– will soon have the same for imperative code

• Implication will be false if the code is incorrect
– reasoning can verify correct code
– reasoning will never accept incorrect code



Correctness via Forward & Backward

• Can use both types of reasoning on longer code

	 	 {{	P	}}
	 	 				S
	 	 {{	R1	}}
	 	 {{	R2	}}
	 	 				T
	 	 {{	Q	}}

– first and third triples is always valid
– only need to check second triple

verify that R1 implies R2

1

3

2



Forward & Backward
Reasoning



Forward and Backward Reasoning

• Imperative code made up of
– assignments (mutation)
– conditionals
– loops

• Anything can be rewritten with just these

• We will learn forward / backward rules to handle them
– will also learn a rule for function calls
– once we have those, we are done



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17n;

{{	_______________________	}}
 y = 42n;

{{	_______________________	}}
 z = w + x + y;

{{	_______________________	}}

• What do we know is true after x = 17 ?
– want the strongest postcondition (most precise)



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17n;

{{	w	>	0	and	x	=	17	}}
 y = 42n;

{{	_______________________	}}
 z = w + x + y;

{{	_______________________	}}

• What do we know is true after x = 17 ?
– w was not changed, so w	>	0 is still true
– x is now 17

• What do we know is true after y = 42 ?



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17n;

{{	w	>	0	and	x	=	17	}}
 y = 42n;

{{	w	>	0	and	x	=	17	and	y	=	42	}}
 z = w + x + y;

{{	_______________________	}}

• What do we know is true after y = 42 ?
– w and x were not changed, so previous facts still true
– y is now 42

• What do we know is true after z = w + x + y ?



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17n;

{{	w	>	0	and	x	=	17	}}
 y = 42n;

{{	w	>	0	and	x	=	17	and	y	=	42	}}
 z = w + x + y;

{{	w	>	0	and	x	=	17	and	y	=	42	and	z	=	w	+	x	+	y	}}

• What do we know is true after z = w + x + y ?
– w, x, and y were not changed, so previous facts still true
– z is now w	+	x	+	y

• Could also write z	=	w	+	59 (since x	=	17 and y	=	42)



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17n;

{{	w	>	0	and	x	=	17	}}
 y = 42n;

{{	w	>	0	and	x	=	17	and	y	=	42	}}
 z = w + x + y;

{{	w	>	0	and	x	=	17	and	y	=	42	and	z	=	w	+	x	+	y	}}

• Could write z	=	w	+	59, but do not write z	>	59 !
– that is true since w	>	0, but…



Example Forward Reasoning through Assignments

• Could write z	=	w	+	59, but do not write z	>	59 !
– that is true since w	>	0, but…

w

z 60

z	>	59	and	w	>	0

z	=	w	+	59	and	w	>	0



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17n;

{{	w	>	0	and	x	=	17	}}
 y = 42n;

{{	w	>	0	and	x	=	17	and	y	=	42	}}
 z = w + x + y;

{{w	>	0	and	x	=	17	and	y	=	42	and	z	=	w	+	x	+	y	}}

• Could write z	=	w	+	59, but do not write z	>	59 !
– that is true since w	>	0, but…
– that is not the strongest postcondition

correctness check could now fail even if the code is right



Code Example of Forward Reasoning

// @param w an integer > 0
// @returns an integer z > 59
const f = (w: bigint): bigint => {
  const x = 17n;
  const y = 42n;
  const z = w + x + y;
  return z;
};

• Let’s check correctness using Floyd logic…



Code Example of Forward Reasoning

// @param w an integer > 0
// @returns an integer z > 59
const f = (w: bigint): bigint => {
  {{	w	>	0	}}
  const x = 17n;
  const y = 42n;
  const z = w + x + y;
  {{	z	>	59	}}
  return z;
};

• Reason forward…



Code Example of Forward Reasoning

// @param w an integer > 0
// @returns an integer z > 59
const f = (w: bigint): bigint => {
  {{	w	>	0	}}
  const x = 17n;
  const y = 42n;
  const z = w + x + y;
  {{	w	>	0	and	x	=	17	and	y	=	42	and	z	=	w	+	x	+	y	}}
  {{	z	>	59	}}
  return z;
};

• Check implication: z	 =	w	+	x	+	y
	 =	w	+	17	+	y  since x	=	17
	 =	w	+	59   since y	=	42
	 >	59    since w	>	0



Code Example of Forward Reasoning

// @param w an integer > 0
// @returns an integer z > 59
const f = (w: bigint): bigint => {
  const x = 17n;
  const y = 42n;
  const z = w + x + y;
  return z;
};

• How about if we use our old approach?

• Known facts: w	>	0, x	=	17, y	=	42, and z	=	w	+	x	+	y

• Prove that postcondition holds: z	>	59

find facts by reading along path 
from top to return statement



Code Example of Forward Reasoning

// @param w an integer > 0
// @returns an integer z > 59
const f = (w: bigint): bigint => {
  const x = 17n;
  const y = 42n;
  const z = w + x + y;
  return z;
};

• We’ve been doing forward reasoning all quarter!
– forward reasoning is (only) “and” with no mutation

• Line-by-line facts are for “let” (not “const”)



Forward Reasoning through Assignments

• Forward reasoning is trickier with mutation
– gets harder if we mutate a variable

 w = x + y;

{{	w	=	x	+	y	}}
 x = 4n;

{{	w	=	x	+	y	and	x	=	4	}}
 y = 3n;

{{	w	=	x	+	y	and	x	=	4	and	y	=	3	}}

• Final assertion is not necessarily true
– w	=	x	+	y is true with their old values, not the new ones
– changing the value of “x” can invalidate facts about x

facts refer to the old value, not the new value

– avoid this by using different names for old and new values



Forward Reasoning through Assignments

• Fix this by giving new names to initial values
– will use “x” and “y” to refer to current values
– can use “x0” and “y0” (or other subscripts) for earlier values

rewrite existing facts to use the names for earlier values

{{	w	=	x	+	y	}}
 x = 4n;

{{	w	=	x0	+	y	and	x	=	4	}}
 y = 3n;

{{	w	=	x0	+	y0	and	x	=	4	and	y	=	3	}}

• Final assertion is now accurate
– w is equal to the sum of the initial values of x and y



Forward Reasoning through Assignments

• For assignments, general forward reasoning rule is

{{	P	}}
				x = y;
{{	P[x	↦	x0]	and	x	=	y[x	↦	x0]	}}

– replace all “x”s in P and y with “x0”s  (or any new name) 

• This process can be simplified in many cases
– no need for x0 if we can write it in terms of new value
– e.g., if “x	=	x0	+	1”, then “x0	=	x	–	1”
– assertions will be easier to read without old values

(Technically, this is weakening, but it’s usually fine
 Postconditions usually do not refer to old values of variables.)



Forward Reasoning through Assignments

• For assignments, general forward reasoning rule is

{{	P	}}
				x = y;
{{	P[x	↦	x0]	and	x	=	y[x	↦	x0]	}}	 	 	 	x0	is any new variable name

• If x0	=	f(x), then we can simplify this to

{{	P	}}
				x = … x …;
{{	P[x	↦	f(x)]	}}	 	 	 	 	 	 no need for, e.g., “and	x	=	x0	+	1”

– if assignment is “x	=	x0	+	1”, then “x0	=	x	–	1”
– if assignment is “x	=	2x0”, then “x0	=	x/2”
– does not work for integer division (an un-invertible operation)



Correctness Example by Forward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: bigint): bigint => {
  {{	n	≥	1	}}
  n = n + 3n;

  {{	n	–	3	≥	1	}}
  {{	n2	≥	10	}}
  return n * n;
};

n2	 	≥	42	 	 	 since	n	–	3	≥	1	(i.e.,		n	≥	4)
	 =	16
	 >	10

n	=	n0	+	3	means n	–	3	=	n0

check this implication

This is the preferred approach.
Avoid subscripts when possible.



Example Backward Reasoning with Assignments

{{	_______________________	}}
 x = 17n;

{{	_______________________	}}
 y = 42n;

{{	_______________________	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before z = w + x + y so z	<	0 ?
– want the weakest postcondition (most allowed states)



Example Backward Reasoning with Assignments

{{	_______________________	}}
 x = 17n;

{{	_______________________	}}
 y = 42n;

{{	w	+	x	+	y	<	0	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before z = w + x + y so z	<	0 ?
– must have w	+	x	+	y	<	0 beforehand

• What must be true before y = 42 for w	+	x	+	y	<	0 ?



Example Backward Reasoning with Assignments

{{	_______________________	}}
 x = 17n;

{{	w	+	x	+	42	<	0	}}
 y = 42n;

{{	w	+	x	+	y	<	0	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before y = 42 for w	+	x	+	y	<	0 ?
– must have w	+	x	+	42	<	0 beforehand

• What must be true before x = 17 for w	+	x	+	42	<	0 ?



Example Backward Reasoning with Assignments

{{	w	+	17	+	42	<	0	}}
 x = 17n;

{{	w	+	x	+	42	<	0	}}
 y = 42n;

{{	w	+	x	+	y	<	0	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before x = 17 for w	+	x	+	42	<	0 ?
– must have w	+	59	<	0 beforehand

• All we did was substitute right side for the left side
– e.g., substitute “w	+	x	+	y” for “z” in “z	<	0”
– e.g., substitute “42” for “y” in “w	+	x	+	y	<	0”
– e.g., substitute “17” for “x” in “w	+	x	+	42	<	0”



Backward Reasoning through Assignments

• For assignments, backward reasoning is substitution

{{	Q[x	↦	y]	}}
				x = y;
{{	Q	}}

– just replace all the “x”s with “y”s
– we will denote this substitution by Q[x	↦	y]

• Mechanically simpler than forward reasoning
– no need for subscripts



Correctness Example by Forward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: bigint): bigint => {
  {{	n	≥	1	}}
  n = n + 3n;

  {{	n2	≥	10	}}
  return n * n;
};

• Code is correct if this triple is valid…



Correctness Example by Backward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
const f = (n: bigint): bigint => {
  {{	n	≥	1	}}
  {{	(n	+	3)2	≥	10	}}
  n = n + 3n;
  {{	n2	≥	10	}}
  return n * n;
};

(n+3)2	 	≥	(1	+	3)2	 	 	 since	n	≥	1
	 	 =	16
	 	 >	10

check this implication



Conditionals



Conditionals in Functional Programming

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  if (a >= 0n && b >= 0n) {
    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }

  …

• Prior reasoning also included conditionals
– what does that look like in Floyd logic?



Conditionals in Floyd Logic

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  {{	}}
  if (a >= 0n && b >= 0n) {
    {{	a	≥	0	and	b	≥	0	}}
    const L: List = cons(a, cons(b, nil));
    return sum(L);
  }

  …

• Conditionals introduce extra facts in forward reasoning
– simple “and” case since nothing is mutated



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;
  } else {
    m = 0n;

  }
  return m;
}

• Code like this was impossible without mutation
– cannot write to a “const” after its declaration

• How do we handle it now?



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;
  } else {
    m = 0n;

  }
  return m;
}

• Reason separately about each path to a return
– handle each path the same as before
– but now there can be multiple paths to one return



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{	}}
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;

  } else {
    m = 0n;
  }

  {{	m	>	n	}}
  return m;
}

• Check correctness path through “then” branch



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{	}}
  let m;
  if (n >= 0n) {
    {{	n	≥	0	}}
    m = 2n * n + 1n;

  } else {
    m = 0n;

  }
  {{	m	>	n	}}
  return m;
}



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{	}}
  let m;
  if (n >= 0n) {
    {{	n	≥	0	}}
    m = 2n * n + 1n;

    {{	n	≥	0	and	m	=	2n	+	1}}
  } else {
    m = 0n;
  }

  {{	m	>	n	}}
  return m;
}



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{	}}
  let m;
  if (n >= 0n) {
    {{	n	≥	0	}}
    m = 2n * n + 1n;

    {{	n	≥	0	and	m	=	2n	+	1}}
  } else {
    m = 0n;
  }

  {{	n	≥	0	and	m	=	2n	+	1	}}
  {{	m	>	n	}}
  return m;
}

m	 =	2n+1
	 >	2n	 	 since 1	>	0
	 ≥	n		 	 since n	≥	0



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{	}}
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;

  } else {
    m = 0n;
  }

  {{	n	≥	0	and	m	=	2n	+	1	}}
  {{	m	>	n	}}
  return m;
}

• Note: no mutation, so we can do this in our head
– read along the path, and collect all the facts



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{	}}
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;

  } else {
    m = 0n;
  }

  {{	n	<	0	and	m	=	0	}}
  {{	m	>	n	}}
  return m;
}

• Check correctness path through “else” branch
– note: no mutation, so we can do this in our head

m	 =	0
	 >	n		 	 since 0	>	n



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{	}}
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;

  } else {
    m = 0n;
  }

  {{	_________________________________________________________________	}}
  {{	m	>	n	}}
  return m;
}

• What is true after the either branches?



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{	}}
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;

  } else {
    m = 0n;
  }

  {{	(n	≥	0	and	m	=	2n	+	1)	or	(n	<	0	and	m	=	0)	}}
  {{	m	>	n	}}
  return m;
}

• What is true after the either branches?
– the “or” means we have to reason by cases anyway!



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{	}}
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;

  } else {
    return 0n;
  }

  {{	(n	≥	0	and	m	=	2n	+	1)	or	(n	<	0	and	??)	}}
  {{	m	>	n	}}
  return m;
}

• What is the state after a “return”?



Conditionals in Floyd Logic

// Returns an integer m with m > n
const g = (n: bigint): bigint => {
  {{	}}
  let m;
  if (n >= 0n) {
    m = 2n * n + 1n;

  } else {
    return 0n;
  }

  {{	(n	≥	0	and	m	=	2n	+	1)	or	(n	<	0	and	false)	}}
  {{	m	>	n	}}
  return m;
}

• State after a “return” is false (no states)

simplifies to just n	≥	0	and	m	=	2n	+	1



Function Calls



Reasoning about Function Calls

// @requires P2           -- preconditions a, b
// @returns x such that R -- conditions on a, b, x
const f = (a: bigint, b: bigint): bigint => {..}

• Forward reasoning rule is

{{	P	}}
				x = f(a, b);
{{	P[x	↦	x0]	and	R	}}

• Backward reasoning rule is

{{	Q1	and	P2	}}
				x = f(a, b);
{{	Q1	and	Q2	}}

Must also check that P implies P2

Must also check that R implies Q2

Q2 is the part of postcondition using “x”



Loops



Correctness of Loops

• Assignment and condition reasoning is mechanical

• Loop reasoning cannot be made mechanical
– no way around this

(311 alert: this follows from Rice’s Theorem)

• Thankfully, one extra bit of information fixes this
– need to provide a “loop invariant”
– with the invariant, reasoning is again mechanical



Loop Invariants

• Loop invariant is true every time at the top of the loop

{{	Inv:	I	}}
while (cond) {
  S
}

– must be true when we get to the top the first time
– must remain true each time execute S and loop back up

• Use “Inv:” to indicate a loop invariant
otherwise, this only claims to be true the first time at the loop



Loop Invariants

• Loop invariant is true every time at the top of the loop

{{	Inv:	I	}}
while (cond) {
  S
}

– must be true 0 times through the loop (at top the first time)
– if true n times through, must be true n+1 times through

• Why do these imply it is always true?
– follows by structural induction (on ℕ)



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
  S
}

{{	Q	}}

• How do we check validity with a loop invariant?
– intermediate assertion splits into three triples to check



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
  S
}

{{	Q	}}

Splits correctness into three parts

1.  I holds initially
2.  S	preserves	I
3.  Q holds when loop exits

1.  I holds initially



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
 {{	I	and	cond	}}
  S
 {{	I	}}
}

{{	Q	}}

Splits correctness into three parts

1.  I holds initially
2.  S	preserves	I
3.  Q holds when loop exits

1.  I holds initially

2.  S	preserves	I



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
 {{	I	and	cond	}}
  S
 {{	I	}}
}
{{	I	and	not	cond	}}
{{	Q	}}

Splits correctness into three parts

1.  I holds initially      implication

2.  S	preserves	I	 	 	 	 	 	 forward/back then implication

3.  Q holds when loop exits   implication

1.  I holds initially

2.  S	preserves	I

3.  Q holds when loop exits



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
  S
}

{{	Q	}}

Formally, invariant split this into three Hoare triples:

1. {{	P	}}		{{	I	}}     I holds initially
2. {{	I	and	cond	}}		S		{{	I	}}  S	preserves	I
3. {{	I	and	not	cond	}}		{{	Q	}}  Q holds when loop exits



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{		}}
let i: bigint = 0n;
let s: bigint = 0n;

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  i = i + 1n;

  s = s + i;
}

{{	s	=	sum-to(n)	}}



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{		}}
let i: bigint = 0n;
let s: bigint = 0n;

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  i = i + 1n;

  s = s + i;
}

{{	s	=	sum-to(n)	}}

Easy to get this wrong!
– might be initializing “i” wrong (i	=	1?)
– might be exiting at the wrong time (i	≠	n–1?)
– might have the assignments in wrong order
– …

Fact that we need to check 3 implications is a
strong indication that more bugs are possible.



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{		}}
let i: number = 0n;
let s: number = 0n;

{{	i	=	0	and	s	=	0	}}
{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  …

sum-to(i)
		=	sum-to(0)		 since i	=	0
		=	0	 	 	 def of sum-to
		=	s		



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  {{	s	=	sum-to(i)	and	i	≠	n	}}
  i = i + 1n;

  s = s + i;
  {{	s	=	sum-to(i)	}}
}



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  {{	s	=	sum-to(i)	and	i	≠	n	}}
  i = i + 1n;

  {{	s	=	sum-to(i–1)	and	i–1	≠	n	}}
  s = s + i;

  {{	s	=	sum-to(i)	}}
}



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  {{	s	=	sum-to(i)	and	i	≠	n	}}
  i = i + 1n;

  {{	s	=	sum-to(i–1)	and	i–1	≠	n	}}
  s = s + i;

  {{	s	–	i	=	sum-to(i–1)	and	i–1	≠	n	}}
  {{	s	=	sum-to(i)	}}
}

s	 =	i	+	sum-to(i-1)	 since s	–	i	=	sum-to(i-1)
	 =	sum-to(i)	 	 def of sum-to



Example Loop Correctness

• Recursive function to calculate 1	+	2	+	...	+	n

func		sum-to(0)	 :=	0
	 	sum-to(n+1)	:=	(n+1)	+	sum-to(n)	 	 	 for	any	n	:	ℕ

• This loop claims to calculate it as well

{{	Inv:	s	=	sum-to(i)	}}
while (i != n) {
  i = i + 1n;

  s = s + i;

}

{{	s	=	sum-to(i)	and	i	=	n	}}
{{	s	=	sum-to(n)	}}

sum-to(n)
		=	sum-to(i)	 	 since i	=	n
		=	s		 	 	 since s	=	sum-to(i)



Termination

• This analysis does not check that the code terminates
– it shows that the postcondition holds if the loop exits
– but we never showed that the loop does exit

• Termination follows from the running time analysis
– e.g., if the code runs in O(n2) time, then it terminates
– an infinite loop would be O(infinity)
– any finite bound on the running time proves it terminates

• Normal to also analyze the running time of our code, 
and we get termination already from that analysis



Loops & Recursion



Loops and Recursion

• To check a loop, we need a loop invariant

• Where does this come from?
– part of the algorithm idea / design

see 421 for more discussion

– Inv and the progress step formalize the algorithm idea
most programmers can easily formalize an English description
(very tricky loops are the exception to this)

• Today, we’ll focus on converting recursion into a loop
– HW6 will fit these patterns
– (more loops later)



Example Loop Correctness

• Recursive function to calculate n2 without multiplying

func		square(0)	 :=	0
	 	square(n+1)	:=	square(n)	+	2n	+	1	 	 	 for	any	n	:	ℕ

• We already proved that this calculates n2
– we can implement it directly with recursion

• Let’s try writing it with a loop instead...



Example Loop Correctness

func		square(0)	 :=	0
	 	square(n+1)	:=	square(n)	+	2n	+	1	 	 	 for	any	n	:	ℕ

• Loop idea for calculating square(n):
– calculate i	=	0,	1,	2,	…,	n
– keep track of square(i) in “s” as we go along

• Formalize that idea in the loop invariant
along with the fact that we make progress by advancing i to i+1 each step

0 1 2 …i	= n

s	= 0 1 4 … n2



Example Loop Correctness

func		square(0)	 :=	0
	 	square(n+1)	:=	square(n)	+	2n	+	1	 	 	 for	any	n	:	ℕ

• Loop implementation

let i: bigint = 0n;
let s: bigint = 0n;
{{	Inv:	s	=	square(i)	}}
while (i != n) {
  s = s + i + i + 1n;
  i = i + 1n;

}
return s;

Loop invariant says how i and s relate
 s holds square(i), whatever i 

i starts at 0 and increases to n

Now we can check correctness…



Example Loop Correctness

func		square(0)	 :=	0
	 	square(n+1)	:=	square(n)	+	2n	+	1	 	 	 for	any	n	:	ℕ

• Loop implementation

let i: bigint = 0n;
let s: bigint = 0n;
{{	Inv:	s	=	square(i)	}}
while (i != n) {
  s = s + i + i + 1n;
  i = i + 1n;

}

{{	s	=	square(i)	and	i	=	n	}}
{{	s	=	square(n)	}}
return s;

square(n)
		=	square(i)	 	 since i	=	n
		=	s		 	 	 since s	=	square(i)



Example Loop Correctness

func		square(0)	 :=	0
	 	square(n+1)	:=	square(n)	+	2n	+	1	 	 	 for	any	n	:	ℕ

• Loop implementation

{{	}}
let i: bigint = 0n;
let s: bigint = 0n;

{{	i	=	0	and	s	=	0	}}
{{	Inv:	s	=	square(i)	}}
while (i != n) {
  s = s + i + i + 1n;
  i = i + 1n;

}
return s;

square(i)
		=	square(0)		 since i	=	0
		=	0		 	 	 def of square
		=	s		 	 	 since s	=	0



Example Loop Correctness

func		square(0)	 :=	0
	 	square(n+1)	:=	square(n)	+	2n	+	1	 	 	 for	any	n	:	ℕ

• Loop implementation

{{	Inv:	s	=	square(i)	}}
while (i != n) {
  {{	s	=	square(i)	and	i	≠	n	}}
  s = s + i + i + 1n;

  i = i + 1n;
  {{	s	=	square(i)	}}
}
return s;



Example Loop Correctness

func		square(0)	 :=	0
	 	square(n+1)	:=	square(n)	+	2n	+	1	 	 	 for	any	n	:	ℕ

• Loop implementation

{{	Inv:	s	=	square(i)	}}
while (i != n) {
  {{	s	=	square(i)	and	i	≠	n	}}
  s = s + i + i + 1n;

  {{	s	=	square(i+1)	}}
  i = i + 1n;

  {{	s	=	square(i)	}}
}

return s;



Example Loop Correctness

func		square(0)	 :=	0
	 	square(n+1)	:=	square(n)	+	2n	+	1	 	 	 for	any	n	:	ℕ

• Loop implementation

{{	Inv:	s	=	square(i)	}}
while (i != n) {
  {{	s	=	square(i)	and	i	≠	n	}}
  {{	s	+	2i	+	1	=	square(i+1)	}}
  s = s + i + i + 1n;
  {{	s	=	square(i+1)	}}
  i = i + 1n;
  {{	s	=	square(i)	}}
}
return s;



Example Loop Correctness

func		square(0)	 :=	0
	 	square(n+1)	:=	square(n)	+	2n	+	1	 	 	 for	any	n	:	ℕ

• Loop implementation

{{	Inv:	s	=	square(i)	}}
while (i != n) {
  {{	s	=	square(i)	and	i	≠	n	}}
  {{	s	+	2i	+	1	=	square(i+1)	}}
  s = s + i + i + 1n;
  {{	s	=	square(i+1)	}}
  i = i + 1n;
  {{	s	=	square(i)	}}
}
return s;

s	+	2i	+	1	 =	square(i)	+	2i	+	1	 since s	=	square(i)
	 	 	 =	square(i+1)	 	 def of square



“Bottom Up” Loops on Natural Numbers

• Previous examples store function value in a variable

{{	Inv:	s	=	sum-to(i)	}}

{{	Inv:	s	=	square(i)	}}

• Start with i	=	0 and work up to i	=	n

• Call this a “bottom up” implementation
– evaluates in the same order as recursion
– from the base case up to the full input

square(3)

square(2)

square(1)

square(0)



“Bottom Up” Loops on the Natural Numbers

func		f(0)		 :=	…
	 	f(n+1)	 :=	…	f(n)	…	 	 	 for	any	n	:	ℕ

• Can be implemented with a loop like this

const f = (n: bigint): bigint => {
  let i: bigint = 0n;
  let s: bigint = “…”;   // = f(0)
  {{	Inv:	s	=	f(i)	}}
  while (i != n) {
    s = “…	f(i)	…”[f(i)	↦	s]   // = f(i+1)
    i = i + 1n;
  }

  return s;
};



L	=

“Bottom Up” Loops on Lists

• Works nicely on ℕ
– numbers are built up from 0 using succ (+1)
– e.g., build n	=	3	up	from 0

• What about List?
– lists are built up from nil using cons
– e.g., build L	=	cons(1,	cons(2,	cons(3,	nil))) from nil:

1 2 3 nil

3 2 1 0
+1+1+1n	=



“Bottom Up” Loops on Lists?

• What about List?
– lists are built up from nil using cons
– e.g., build L	=	cons(1,	cons(2,	cons(3,	nil))) from nil:

• First step to build L is to build cons(3,	nil) from nil
– how do we know what number to put in front of nil?

3 is all the way at the end of the list!

– how can we fix this?
– reverse the list!

1 2L	= 3 nil

L.hd



func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• Loop idea for calculating twice(L):
– store rev(L) in “R”

– watch what happens as we move R forward…

Example “Bottom Up” List Loop

1 2L	= 3 nil

R	= 3 2 1 nil



func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• Loop idea for calculating twice(L):
– store rev(L) in “R”
– moving forward in R is moving backward in L…

– as R moves forward, rev(R) remains a prefix of L

Example “Bottom Up” List Loop

1 2L	= 3 nil

R	= 3 2 1 nil

R.tl	= 2 1 nil



R	=

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• Loop idea for calculating twice(L):
– store rev(L) in “R”
– moving forward in R is moving backward in L…

– value dropped from R was last(L)	=	3
can use it to build cons(3,	nil)

Example “Bottom Up” List Loop

1 2L	= 3 nil

3 2 1 nil

R.tl	= 2 1 nil



func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• Loop idea for calculating twice(L):
– store rev(L) in “R” initially. move forward to R.tl, etc.
– add items skipped over by R to the front of “S”

– as R moves forward,	S stores a suffix of L

Example “Bottom Up” List Loop

1 2L	= 3 nil

S	= 3 nil

R	= 2 1 nil



Example “Bottom Up” List Loop

1 2L	= 3 nil

SR

nil3 2 1 nil1



Example “Bottom Up” List Loop

1 2L	= 3 nil

SR

nil3 2 1 nil

nil32 1 nil

1

2



Example “Bottom Up” List Loop

1 2L	= 3 nil

SR

nil3 2 1 nil

nil32 1 nil

nil321 nil

1

2

3



Example “Bottom Up” List Loop

1 2L	= 3 nil

SR

nil3 2 1 nil

nil32 1 nil

nil321 nil

nil321nil

1

2

3

4

Formalize that idea as  L	=	concat(rev(R),	S)



Example “Bottom Up” List Loop

1 2L	= 3 nil

SR

nil3 2 1 nil

nil32 1 nil

nil321 nil

nil321nil

1

2

3

4

S rebuilds the list L “bottom up”
calculate twice(L) “bottom up” as we go 



func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• Loop idea for calculating twice(L):
– store rev(L) in “R” initially. move forward to R.tl, etc.
– add items skipped over by R to the front of “S”

S rebuilds the list L “bottom up”

– calculate twice(S), as we go, in “T”

• Formalize that idea in the loop invariant 

Example “Bottom Up” List Loop

L	=	concat(rev(R),	S)		and		T	=	twice(S)



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• This loop claims to calculate twice(L)…
let R: List = rev(L);
let S: List = nil;
let T: List = nil;

{{	Inv:	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
while (R.kind !== “nil”) {
  T = cons(2n * R.hd, T);

  S = cons(R.hd, S);
  R = R.tl;

}
return T;  // = twice(L)

Still need to check this.

Hopefully obvious that it could be wrong.
(Testing length 0, 1, 2, 3 is not enough!)



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• This loop claims to calculate twice(L)
…

{{	Inv:	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
while (R.kind !== “nil”) {
  T = cons(2n * R.hd, T);

  S = cons(R.hd, S);
  R = R.tl;

}

{{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	and	R	=	nil	}}
{{	T	=	twice(L)	}}
return T;  // = twice(L)



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• Check that Inv is implies the postcondition:

{{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	and	R	=	nil	}}
{{	T	=	twice(L)	}}

	 	 					L	=	concat(rev(R),	S)
	 	 		 =	concat(rev(nil),	S)	 	 since R	=	nil
	 	 		 =	concat(nil,	S)	 	 	 def of rev
	 	 		 =	S	 	 	 	 	 	 def of concat
	 	 	

	 	 					T	=	twice(S)
	 	 	 =	twice(L)	 	 	 	 since	L	=	S



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• This loop claims to calculate twice(L)

{{	}}	
let R: List = rev(L);
let S: List = nil;
let T: List = nil;
{{	R	=	rev(L)	and	S	=	nil	and	T	=	nil	}}
{{	Inv:	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
while (R.kind !== “nil”) {
  T = cons(2n * R.hd, T);

  S = cons(R.hd, S);
  R = R.tl;

}



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• Check that Inv is true initially:

{{	R	=	rev(L)	and	S	=	nil	and	T	=	nil	}}
{{	Inv:	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}

	 	 concat(rev(R),	S)
	 	 		=	concat(rev(rev(L)),	S)	 	 since R	=	rev(L)
	 	 		=	concat(L,	S)	 	 	 	 Lemma 3
	 	 		=	concat(L,	nil)	 	 	 	 since S	=	nil
	 	 		=	L		 	 	 	 	 	 Lemma 2

	 	 twice(S)
	 	 		=	twice(nil)	 	 	 	 	 since S	=	nil
	 	 		=	nil	 	 	 	 	 	 def of twice
	 	 		=	T	 	 	 	 	 	 since T	=	nil



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• This loop claims to calculate twice(L)

{{	Inv:	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
while (R.kind !== “nil”) {
  {{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	and	R	≠	nil	}}
  T = cons(2n * R.hd, T);

  S = cons(R.hd, S);
  R = R.tl;

  {{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
}



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• This loop claims to calculate twice(L)

{{	Inv:	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
while (R.kind !== “nil”) {
  {{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	and	R	≠	nil	}}
  T = cons(2n * R.hd, T);

  S = cons(R.hd, S);
  {{	L	=	concat(rev(R.tl),	S)	and	T	=	twice(S)	}}
  R = R.tl;
  {{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
}



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• This loop claims to calculate twice(L)

{{	Inv:	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
while (R.kind !== “nil”) {
  {{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	and	R	≠	nil	}}
  T = cons(2n * R.hd, T);

  {{	L	=	concat(rev(R.tl),	cons(R.hd,	S))	and	T	=	twice(S)	}}
  S = cons(R.hd, S);

  {{	L	=	concat(rev(R.tl),	S)	and	T	=	twice(S)	}}
  R = R.tl;

  {{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
}



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• This loop claims to calculate twice(L)

{{	Inv:	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
while (R.kind !== “nil”) {
  {{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	and	R	≠	nil	}}
  {{	L	=	concat(rev(R.tl),	cons(R.hd,	S))	and	cons(2·R.hd,	T)	=	twice(cons(R.hd,	S))	}}
  T = cons(2n * R.hd, T);
  {{	L	=	concat(rev(R.tl),	cons(R.hd,	S))	and	T	=	twice(cons(R.hd,	S))	}}
  S = cons(R.hd, S);
  {{	L	=	concat(rev(R.tl),	S)	and	T	=	twice(S)	}}
  R = R.tl;

  {{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
}



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• Check that Inv is preserved by the loop body:

{{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	and	R	≠	nil	}}
{{	L	=	concat(rev(R.tl),	cons(R.hd,	S))	and	cons(2·R.hd,	T)	=	twice(cons(R.hd,	S))	}}

	 	 twice(cons(R.hd,	S))
	 	 	 =	cons(2	R.hd,	twice(S))	 def of twice
	 	 	 =	cons(2	R.hd,	T)	 	 	 since T	=	twice(S)
	 	 	

  Note that R	≠	nil means R	=	cons(R.hd,	R.tl)



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• Check that Inv is preserved by the loop body:

{{	L	=	concat(rev(R),	S)	and	T	=	twice(S)	and	R	≠	nil	}}
{{	L	=	concat(rev(R.tl),	cons(R.hd,	S))	and	cons(2·R.hd,	T)	=	twice(cons(R.hd,	S))	}}

	 	 				L	 =	concat(rev(R),	S)
	 	 	 =	concat(rev(cons(R.hd,	R.tl)),	S)	 	 	 	 since R	≠	nil
	 	 	 =	concat(concat(rev(R.tl),	cons(R.hd,	nil)),	S)	 	 def of rev
	 	 	 =	concat(rev(R.tl),	concat(cons(R.hd,	nil),	S))	 	 Lemma 2
	 	 	 =	concat(rev(R.tl),	cons(R.hd,	concat(nil,	S))	 	 def of concat
	 	 	 =	concat(rev(R.tl),	cons(R.hd,	S))	 	 	 	 def of concat
	 	



Example “Bottom Up” List Loop

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• This loop claims to calculate twice(L)
let R: List = rev(L);
let S: List = nil;
let T: List = nil;

{{	Inv:	L	=	concat(rev(R),	S)	and	T	=	twice(S)	}}
while (R.kind !== “nil”) {
  T = cons(2n * R.hd, T);

  S = cons(R.hd, S);
  R = R.tl;

}
return T;  // = twice(L)

“S” is unused! We could remove it.

“S” is useful for proving correctness
but it is not needed at run-time.
(Example of a “ghost” variable.)



“Bottom Up” Loops on Lists

func		f(nil)	 	 :=	…
	 	f(cons(x,	L))	 :=	…	f(L)	…	 	 	 for	any	x	:	ℤ	and	L	:	List

• Can be implemented with a loop like this

const f = (L: List): List => {
  let R: List = rev(L);
  let S: List = nil;
  let T: List = …;   // = f(nil)
  {{	Inv:	L	=	concat(rev(R),	S)	and	T	=	f(S)	}}
  while (R.kind !== “nil”) {
    T = “…	f(L)	…”	[f(L)	↦	T]
    S = cons(R.hd, S);

    R = R.tl;

  }
  return T;  // = f(L)
};



Tail Recursion

func		twice(nil)	 	 :=	nil
	 	twice(cons(x,	L))	 :=	cons(2x,	twice(L))	 for	any	x	:	ℤ	and	L	:	List

• To calculate twice(cons(x,	L)):
– recursively calculate S	=	twice(L)
– when that returns, construct and return cons(2x,	S)

• Not all functions require work after recursion:

func	rev-acc(nil,	R)	 	 :=		R	 	 	 	 	 for	any	R	:	List
	 rev-acc(cons(x,	L),	R)	 :=		rev-acc(L,	cons(x,	R))	 for	any	x	:	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 	 						any	L,	R	:	List

– such functions are called “tail recursive”



“Top Down” List Loop

func	rev-acc(nil,	R)	 	 :=		R
	 rev-acc(cons(x,	L),	R)	 :=		rev-acc(L,	cons(x,	R))

• Tail recursion can be implemented top-down
– no need to reverse the list

const rev_acc = (S: List, R: List): List => {

  {{	Inv:	rev-acc(S0,	R0)	=	rev-acc(S,	R)	}}
  while (S.kind !== “nil”) {
    R = cons(S.hd, R);

    S = S.tl;

  }

  return R;  // = rev-acc(S0, R0)
};

Easy to see that Inv holds initially
since S	=	S0 and R	=	R0



“Top Down” List Loop

func	rev-acc(nil,	R)	 	 :=		R
	 rev-acc(cons(x,	L),	R)	 :=		rev-acc(L,	cons(x,	R))

• Check that the postcondition holds upon exit:

const rev_acc = (S: List, R: List): List => {

  {{	Inv:	rev-acc(S0,	R0)	=	rev-acc(S,	R)	}}
  while (S.kind !== “nil”) {
    R = cons(S.hd, R);

    S = S.tl;

  }

  {{	rev-acc(S0,	R0)	=	rev-acc(S,	R)	and	S	=	nil	}}
  {{	R	=	rev-acc(S0,	R0)	}}
  return R;  // = rev-acc(S0, R0)
};



“Top Down” List Loop

func	rev-acc(nil,	R)	 	 :=		R
	 rev-acc(cons(x,	L),	R)	 :=		rev-acc(L,	cons(x,	R))

• Check that the postcondition holds upon exit:

{{	rev-acc(S0,	R0)	=	rev-acc(S,	R)	and	S	=	nil	}}
{{	R	=	rev-acc(S0,	R0)	}}

rev-acc(S0,	R0)
	 =	rev-acc(S,	R)
	 =	rev-acc(nil,	R)	 	 	 since S	=	nil
	 =	R	 	 	 	 	 	 def of rev-acc



“Top Down” List Loop

func	rev-acc(nil,	R)	 	 :=		R
	 rev-acc(cons(x,	L),	R)	 :=		rev-acc(L,	cons(x,	R))

• Check that Inv is preserved by the loop body:

  {{	Inv:	rev-acc(S0,	R0)	=	rev-acc(S,	R)	}}
  while (S.kind !== “nil”) {

    {{	rev-acc(S0,	R0)	=	rev-acc(S,	R)	and	S	≠	nil	}}
    R = cons(S.hd, R);
    S = S.tl;

    {{	rev-acc(S0,	R0)	=	rev-acc(S,	R)	}}
  }



“Top Down” List Loop

func	rev-acc(nil,	R)	 	 :=		R
	 rev-acc(cons(x,	L),	R)	 :=		rev-acc(L,	cons(x,	R))

• Check that Inv is preserved by the loop body:

  {{	Inv:	rev-acc(S0,	R0)	=	rev-acc(S,	R)	}}
  while (S.kind !== “nil”) {

    {{	rev-acc(S0,	R0)	=	rev-acc(S,	R)	and	S	≠	nil	}}
    R = cons(S.hd, R);

    {{	rev-acc(S0,	R0)	=	rev-acc(S.tl,	R)	}}
    S = S.tl;

    {{	rev-acc(S0,	R0)	=	rev-acc(S,	R)	}}
  }



“Top Down” List Loop

func	rev-acc(nil,	R)	 	 :=		R
	 rev-acc(cons(x,	L),	R)	 :=		rev-acc(L,	cons(x,	R))

• Check that Inv is preserved by the loop body:

  {{	Inv:	rev-acc(S0,	R0)	=	rev_acc(S,	R)	}}
  while (S.kind !== “nil”) {

    {{	rev-acc(S0,	R0)	=	rev-acc(S,	R)	and	S	≠	nil	}}
    {{	rev-acc(S0,	R0)	=	rev-acc(S.tl,	cons(S.hd,	R))	}}
    R = cons(S.hd, R);

    {{	rev-acc(S0,	R0)	=	rev-acc(S.tl,	R)	}}
    S = S.tl;

    {{	rev-acc(S0,	R0)	=	rev-acc(S,	R)	}}
  }



“Top Down” List Loop

func	rev-acc(nil,	R)	 	 :=		R
	 rev-acc(cons(x,	L),	R)	 :=		rev-acc(L,	cons(x,	R))

• Check that Inv is preserved by the loop body:

{{	rev-acc(S0,	R0)	=	rev-acc(S,	R)	and	S	≠	nil	}}
{{	rev-acc(S0,	R0)	=	rev-acc(S.tl,	cons(S.hd,	R))	}}

rev-acc(S.tl,	cons(S.hd,	R))
		=	rev-acc(cons(S.hd,	S.tl),	R)	 	 def of rev-acc
		=	rev-acc(S,	R)	 	 	 	 	 since S	≠	nil
		=	rev-acc(S0,	R0)	 	 	 	 	 since rev-acc(S,	R)	=	rev-acc(S0,	R0)



Tail Recursion Elimination

• Most functional languages eliminate tail recursion
– acts like a loop at run-time
– true of JavaScript as well

• Alternatives for reducing space usage:
1. Find a loop that implements it

     check correctness with Floyd logic

2. Find an equivalent tail-recursive function
     check equivalence with structural induction


