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Procedural Abstraction



Reasoning about Function Calls

func		f(n)		:=	2n	+	1	 	 	 	for	any	n	:	ℕ

• When reasoning, we can replace f(..) by its definition

2	f(10)	 =	2	(2	·	10	+	1)	 	 	 def of f
  =	2	(21)
	 	 =	42



Reasoning about Function Calls

• This becomes trickier with side conditions

func		f(x)	:=	2x	+	1	 	 	 	 if	x	≥	0	 	 	 for	any	x	:	ℤ
	 	f(x)	:=	0		 	 	 	 	 if	x	<	0	 	 	 for	any	x	:	ℤ

• Need to explain why that line holds
– suppose we know that n	≥	10

2	f(n	–	10)	 =	2	(2	·	(n	–	10)	+	1)	 	 def of f (since n	–	10	≥	0)
	 	 	 =	4n	–	38

• This issue does not arise with pattern matching
– easy to see visually which line applies



Concrete vs Abstract

• In math, every definition is spelled out (“concrete”)

func		f(n)		:=	2n	+	1	 	 	 	for	any	n	:	ℕ

– we know exactly what f(n) is for any non-negative n

• In code, details are often hidden (“abstracted away”)
– gives us room to change the details later

// n must be natural. Returns some natural number.
const f = (n: bigint): bigint => { .. };

– this hides what is returned
– can also hide how it is calculated…



Concrete vs Abstract

• In code, details are often hidden (“abstracted away”)
– gives us room to change the details later
– hides complication

// Returns the same numbers but in reverse order, i.e.
//   rev(nil) := nil
//   rev(cons(x, L)) := concat(rev(L), cons(x, nil))
const rev = (L: List): List => {
  return rev_acc(L, nil);  // faster way
};

– straight from spec = “if  …  return concat(rev(L), cons(x, nil))”
– since the answer is the same, clients don’t need to know!

not straight from the spec



Procedural Abstraction

• Hide the details of the function from the caller
– caller only needs to read the specification
– (“procedure” means function)

• Caller promises to pass valid inputs
– no promises on invalid inputs

• Implementer then promises to return correct outputs
– does not matter how



Other Properties of High-Quality Code

• Professionals are expected to write high-quality code

• Correctness is the most important part of quality
– users hate products that do not work properly

• Also includes the following
– easy to change
– easy to understand
– modular



Writing Good Specifications

• TypeScript, like Java, writes specs in /** … */

/**
 * High level description of what function does
 * @param a What “a” represents + any conditions
 * @param b What “b” represents + any conditions
 * @returns Detailed description of return value
 */
const f = (a: bigint, b: bigint): bigint => {..};

– these are formatted as “JSDoc” comments
– (in Java, they are JavaDoc comments)



Writing Good Specifications

• Descriptions can be English or formal

/**
 * Returns the same list but in reverse order
 * @param L The list in question
 * @returns rev(L), where rev is defined by
 *    rev(nil) := nil
 *    rev(cons(x, L)) := concat(rev(L), cons(x, nil))
 */
const rev = (L: List): List => {
  return rev_acc(L, nil);  // faster
};

– English descriptions are typical for most code
professionals are extremely good at formalizing themselves



Writing Good Specifications

• Can place conditions on parameters

/**
 * Returns the last element in the list
 * @param L A list, which must be non-nil
 * @returns last(L), where last is defined by
 *    last(cons(x, nil)) := x
 *    last(cons(x, cons(y, L)) := last(cons(y, L))
 */
const last = (L: List): bigint => {..};

– clients should not pass in empty lists
– but they will!



Writing Good Specifications

• Can place conditions on parameters

/**
 * Returns the last element in the list
 * @param L A list, which must be non-nil
 * @returns last(L), where last is defined by
 *    last(cons(x, nil)) := x
 *    last(cons(x, cons(y, L)) := last(cons(y, L))
 */
const last = (L: List): bigint => {
  if (L.kind === “nil”)
    throw new Error(“Bad client! Bad!”)
  …

– practice defensive programming



Writing Good Specifications

• Can include promises to throw exceptions

/**
 * Returns the last element in the list
 * @param L The list in question
 * @throws Error if L is nil
 * @returns last(L), where last is defined by
 *    last(cons(x, nil)) := x
 *    last(cons(x, cons(y, L)) := last(cons(y, L))
 */
const last = (L: List): bigint => {
 if (L.kind === “nil”) …

– code is the same, but the spec is different
changed what behavior we promise (now have less freedom to change it)



Writing Good Specifications

• Can place conditions on multiple parameters

/**
 * Returns the first n elements from the list L
 * @param n non-negative length of the prefix
 * @param L the list whose prefix should be returned
 * @requires n <= len(L)
 * @returns prefix(n, L), where prefix is…
 */
const prefix = (n: bigint, L: List): List => {..};

– restrictions on one parameter can go in its @param
– restrictions involving multiple should go in @requires

@requires is also fine in the first case though



Writing Good Specifications

• Can include promises to throw exceptions

/**
 * Returns the first n elements from the list L
 * @param n non-negative length of the prefix
 * @param L the list whose prefix should be returned
 * @throws Error if n > len(L)
 * @returns prefix(n, L), where prefix is…
 */
const prefix = (n: bigint, L: List): List => {..};

– this is also reasonable
– I prefer the @requires: promises less to the client

gives us more freedom to change it later…
might want to actually return a list in that case!



Benefits of Specifications

Clear specifications help with understandability and

• Correctness
– reasoning requires clear definition of what the function does

• Changeability
– implementer is free to write any code that meets spec
– client can pass any inputs that satisfy requirements

• Modularity
– people can work on different parts once specs are agreed



Benefits of Specifications

Clear specifications help with understandability and

• Correctness
• Changeability
• Modularity

– knowledge about code details tends to “leak”
easy to do when you know how the other function works

– creates interdependence, trends toward “spaghetti code”
if those details change, it could break the client

– requires constant work to prevent this
may be impossible with enough clients



XKCD
1172



Weaker vs Stronger Specifications

• Since specs are written by us, they can have bugs!
– in those cases, it is necessary to change them

• Useful terminology for comparing specs for a function
– spec A can be stronger or weaker than spec B (or neither)

 Strengthening cannot break the clients
stronger spec accepts the original inputs (or more inputs)
stronger spec makes the original promises about outputs (or more)

 Weakening cannot break the implementation
weaker spec does not allow new inputs
weaker spec does not add more promises about outputs



Weaker vs Stronger Specifications

• To be more formal, we need some terminology

 Precondition:
conditions included in @param and @requires

 Postcondition:
conditions included in @return (and @throws)

 Correctness (satisfying the spec):
for every input satisfying the precondition,
the output will satisfy the postcondition



Weaker vs Stronger Specifications

• Definition: specification S2 is stronger than S1 iff
– precondition of S2 is easier to satisfy than that of S1
– postcondition of S2 is harder to satisfy than that of S1

 (on all inputs allowed by both)

• A stronger specification:
– gives more guarantees to the client

• A weaker specification:
– gives more freedom to the implementer

• An incomparable specification:
– some strengthening, some weakening

Q2Q1

P2P1

P2P1



Weaker vs Stronger Specifications

• Since specs are written by us, they can have bugs!
– in those cases, it is necessary to change them

• Useful terminology for comparing specs for a function
– spec A can be stronger or weaker than spec B (or neither)

Category Stronger Weaker

@param
@requires same or more allowed inputs same or fewer allowed inputs

@return
@throws same or more promised facts same or fewer promised facts

(some others, but these are the main ones)



Example 1: Weaker vs Stronger

// Find the index of x in the list
const indexOf = (x: bigint, L: list): bigint => {..}

Which is stronger?

 Specification A
– requires that L contains the value x
– returns an index where x occurs in L

 Specification B
– requires L contains the value x
– returns the first index where x occurs in L

B is stronger



Example 2: Weaker vs Stronger

// Find the index of x in the list
const indexOf = (x: bigint, L: list): bigint => {..}

Which is stronger?

 Specification A
– requires that L contains the value x
– returns an index where x occurs in L

 Specification C
– returns an index where x occurs in L or -1 if x is not in L

C is stronger



Example 3: Weaker vs Stronger

// Find the index of x in the list
const indexOf = (x: bigint, L: list): bigint => {..}

Which is stronger?

 Specification B
– requires L contains the value x
– returns the first index where x occurs in L

 Specification C
– returns an index where x occurs in L or -1 if x is not in L

incomparable



Incomparable Specifications

• Not all specs are weaker or stronger
– most specs are “incomparable”

• Common ways to be incomparable

– weaker in some ways but stronger in others
one param is strengthened (fewer inputs) but return is weakened

– describes different behavior
one spec says to return “x + 1” and the other says to return “x + 2”

– special case: one throws and other returns on the same input
throw and return are different behaviors



Which is Better?

• Stronger does not always mean better!

• Weaker does not always mean better!

• Strength of specification trades off:
– usefulness to client
– ease of simple, efficient, correct implementation
– promotion of reuse and modularity
– clarity of specification itself

• “It depends”



Abstraction Barrier

• Last time, we saw procedural abstraction

– specification is the “barrier” between the sides
– clients depend only on the spec
– implementer can write any code that satisfies the spec

Function
Implementation

Client
Function Call

Abstraction Barrier

Function Specification



Abstraction Barrier

• Last time, we saw procedural abstraction

• Specifications improve
– understandability (client)
– changeability (implementation)
– modularity

Function
Implementation

Client
Function Call

Abstraction Barrier

Function Specification

correctness is impossible
without specifications



Performance Improvements

• Last time, we saw rev-acc, which is faster than rev
– faster algorithm for reversing a list
– rare to see this

• Most perf improvements change data structures
– different kind of abstraction barrier for data

• Let’s see an example…



Last Element of a List

func	last(nil)	 	 	 	 :=		undefined
	 last(cons(x,	nil))	 	 :=		x		 	 	 	 for	any	x	:	ℤ
	 last(cons(x,	cons(y,	L))	:=	last(cons(y,	L))		 for	any	x,	y	:	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 							any	L	:	List

• Runs in ϴ(n) time
– walks down to the end of the list
– no faster way to do this on a list

• We could cache the last element
– new data type just dropped:

type FastLastList = {list: List, last: bigint|undefined}

empty list has undefined last



Fast-Last List

type FastLastList = {list: List, last: bigint|undefined}

• How do we switch to this type?
– change every List into FastLastList

• Will still have functions that operate on List
– e.g., len,	sum,	concat,	rev

• Suppose F is a FastLastList
– instead of calling rev(F), we have call rev(F.list)
– cleaner to introduce a helper function



Fast-Last List

type FastLastList = {list: List, last: bigint|undefined}

const getLast = (F: FastLastList): bigint|undefined => {
  return F.last;
};

const toList = (F: FastLastList): List<bigint> => {
  return F.list;
};

• How do we switch to this type?
– change every List into FastLastList
– replace F with toList(F) where a List is expected

• What happens if we need to change it again?
– do it all over again!



Another Fast List

• Suppose we often need the 2nd to last, 3rd to last, …
(back of the list). How can we make it faster?
– store the list in reverse order!

type FastBackList = List<bigint>;

const getLast = (F: FastBackList): bigint|undefined => {
  return (F.kind === “nil”) ? undefined : F.hd;
};

const getSecondToLast = (F: FastBackList): bigint|undefined => {
  return (F.kind === “nil”) ? undefined :
         (F.tl.kind === “nil”) ? undefined : F.tl.hd;

};

const toList = (F: FastBackList): List<bigint> => {
  return rev(F);
};



Another Fast List

type FastBackList = List<bigint>;

const getLast = (F: FastBackList): bigint|undefined => {
  return (F.kind === “nil”) ? undefined : F.hd;
};

const toList = (F: FastBackList): List<bigint> => {
  return rev(F);
};

• Problems with this solution…
– no type errors if someone forgets to call toList!

const F: FastBackList = …;
return concat(F, cons(1, nil));  // bad!



Another Fast List — Take Two

type FastBackList = {list: List<bigint>};

const getLast = (F: FastBackList): bigint|undefined => {
  return (F.list.kind === “nil”) ? undefined : F.list.hd;
};

const toList = (F: FastBackList): List<bigint> => {
  return rev(F.list);
};

• Still some problems…
– no type errors if someone grabs the field directly

const F: FastBackList = …;
return concat(F.list, cons(1, nil));  // bad!



Another Fast List — Take Three

const F: FastBackList = …;
return concat(F.list, cons(1, nil));  // bad!

• Only way to completely stop this is to hide F.list
– do not give them the data, just the functions

type FastList = {
  getLast: () => bigint|undefined,
  toList: () => List<bigint>
};

– the only way to get the list is to call F.toList()
– seems weird… but we can make it look familiar



Another Fast List — Take Three

interface FastList {
  getLast: () => bigint|undefined;
  toList: () => List<bigint>;
}

• In TypeScript, “interface” is synonym for “record type”

• You’ve seen this in Java

interface FastList {
  int getLast() throws EmptyList;
  List<Integer> toList();

}

– in 331, our interfaces will only include functions (methods)

Java interface is a record where 
field values are functions (methods)



Data Abstraction



Data Abstraction

• Give clients only operations, not data
– operations are “public”, data is “private”

• We call this an Abstract Data Type (ADT)
– invented by Barbara Liskov in the 1970s
– fundamental concept in computer science

built into Java, JavaScript, etc.

– data abstraction via procedural abstraction

• Critical for the properties we want
– easier to change data structure
– easier to understand (hides details)
– more modular



How to Make a FastList — Attempt One

const makeFastList = (list: List<bigint>): FastList => {
  const last = last(list);
  return {
    getLast: () => { return last; },
   toList: () => { return list; }
 };

};

• Values in getLast and toList fields are functions 

• There is a cleaner way to do this
– will also look more familiar



How to Make a FastList

class FastLastList implements FastList {
  last: bigint|undefined;  // should be “readonly”
  list: List<bigint>;

  constructor(list: List<bigint>) {
    this.last = last(list);
    this.list = list;
  }

  getLast = () => { return this.last; };
  toList = () => { return this.list; };
}

• Can create a new record using “new”
– each record has fields list, last, getLast, toList
– bodies of functions use “this” to refer to the record



How to Make a FastList

class FastLastList implements FastList {
  last: bigint|undefined;  // should be “readonly”
  list: List<bigint>;

  constructor(list: List<bigint>) {
    this.last = last(list);
    this.list = list;
  }

  getLast = () => { return this.last; };
  toList = () => { return this.list; };
}

• Can create a new record using “new”
– all four assignments are executed on each call to “new”
– getLast and toList are always the same functions



How to Make a FastList

class FastLastList implements FastList {
  last: bigint|undefined;  // should be “readonly”
  list: List<bigint>;

  constructor(list: List<bigint>) {
    this.last = last(list);
    this.list = list;
  }

  getLast = () => { return this.last; };
  toList = () => { return this.list; };
}

• Implements the FastList interface
– i.e., it has the expected getLast and toList fields
– (okay for records to have more fields than required)



Another Way to Make a FastList

class FastBackList implements FastList {
  original: List<bigint>;
  reversed: List<bigint>;  // in reverse order

  constructor(list: List<bigint>) {
    this.original = list;
    this.reversed = rev(list);
  }

  getLast = () => {
    return (this.reversed.kind === “nil”) ?
        undefined : this.reversed.hd;
  };

  toList = () => { return this.original; }
}



How Do Clients Get a FastList

const makeFastList = (list: List<bigint>): FastList => {
  return new FastLastList(list);
};

• Export only FastList and makeFastList
– completely hides the data representation from clients

• This is called a “factory function”
– another design pattern
– can change implementations easily in the future

becomes FastBackList with a one-line change

• Difficult to add to the list with this interface
– requires three calls: toList, cons, makeFastList



Another Way To Do It

interface FastList {
  cons: (x: bigint) => FastList;
  getLast: () => bigint|undefined;
  toList: () => List<bigint>;
};

const makeFastList = (): FastList => {
  return new FastBackList(nil);
};

• New method cons returns list with x in front
– example of a “producer” method (others are “observers”)

produces a new list for you

– now, we only need to make an empty FastList
anything else can be built via cons



Another Way To Do It (Even Better)

interface FastList {
  cons: (x: bigint) => FastList;
  getLast: () => bigint|undefined;
  toList: () => List<bigint>;
};

const nilList: FastList = new FastBackList(nil);

const makeFastList = (): FastList => {
  return nilList;
};

• No need to create a new object using “new” every time
– can reuse the same instance

only possible since these are immutable!

– example of the “singleton” design pattern



Full ADT Design Pattern for 331

We will use the following design pattern for ADTs:

• “interface” used for defining ADTs
– declares the methods available

• “class” used for implementing ADTs
– defines the fields and methods
– implements the ADT interface above

• Factory function used to create instances

Stick to regular functions for rest of the code!



Specifications for ADTs



Specifications for ADTs

• Run into problems when we try to write specs
– for example, what goes after @return?

don’t want to say returns the .list field (or reverse of that)
we want to hide those details from clients

interface FastList {
  /**
   * Returns the “underlying” list of items
   * @return ??
   */
  toList: () => List<bigint>;
};

• Need some terminology to clear up confusion



ADT Terminology

New terminology for specifying ADTs

 Concrete State / Representation (Code)
actual fields of the record and the data stored in them

Last example: {list: List, last: bigint|undefined}

 Abstract State / Representation (Math)
how clients should think about the object

Last example: List (i.e., nil or cons)

• We’ve had different abstract and concrete types all along!
– in our math, List is an inductive type (abstract)
– in our code, List is a string or a record (concrete)



List Is Like an ADT

Inductive types also differ in abstract / concrete states:

 Concrete State / Representation (Code)
actual fields of the record and the data stored in them

Last example:  {kind:“nil”} | {kind:“cons”, hd:bigint, tl:List}

 Abstract State / Representation (Math)
how clients should think about the object

Last example: List (i.e., nil or cons)

• Inductive types also use a design pattern to work in TypeScript
– details are different than ADTs (e.g., no interfaces)



ADT Terminology

New terminology for specifying ADTs

 Concrete State / Representation (Code)
actual fields of the record and the data stored in them

Last example: {kind:“nil”} | {kind:“cons”, hd:bigint, tl:List}

 Abstract State / Representation (Math)
how clients should think about the object

Last example: List (i.e., nil or cons)

• Term “object” (or “obj”) will refer to abstract state
– “object” means mathematical object
– “obj” is the mathematical value that the record represents



Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
export interface FastList {
  /**
   * Returns the last element of the list (O(1) time).
   * @returns last(obj)
   */
  getLast: () => bigint | undefined;

• “obj” refers to the abstract state (the list, in this case)
– actual state will be a record with fields last and list



Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
export interface FastList {
  …

  /**
   * Returns the object as a regular list of items.
   * @returns obj
   */
 toList: () => List<bigint>;

• In math, this function does nothing (“@returns obj”)
– two different concrete representations of the same idea
– details of the representations are hidden from clients



Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
export interface FastList {
  …

  /**
   * Returns a new list with x in front of this list.
   * @returns cons(x, obj)
   */
  cons = (x: bigint) => FastList;

• Producer method: makes a new list for you
– “obj” above is a list, so cons(x,	obj) makes sense in math



Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
export interface FastList {
  …

  /**
   * Returns a new list with x in front of this list.
   * @returns cons(x, obj)
   */
  cons = (x: bigint) => FastList;

• Specification does not talk about fields, just “obj”
– fields are hidden from clients



Documenting an
ADT Implementation



Documenting an ADT Implementation

• Last lecture, we saw how to write an ADT spec

• Key idea is the “abstract state”
– meaning of an object in math terms
– how clients should think (reason) about the object

• Write specifications in terms of the abstract state
– describe the return value in terms of “obj”

• We also need to reason about ADT implementation
– for this, we do want to talk about fields
– fields are hidden from clients, but visible to implementers



Documenting an ADT Implementation

• We also need to document the ADT implementation
– for this, we need two new tools

 Abstraction Function
defines what abstract state the field values currently represent

• Maps the field values to the object they represent
– object is math, so this is a mathematical function

there is no such function in the code — just a tool for reasoning

– will usually write this as an equation
obj	=	…	 	 right-hand side uses the fields



Documenting the FastList ADT

class FastLastList implements FastList {
  // AF: obj = this.list
  readonly last: bigint | undefined;
  readonly list: List<bigint>;
  …
}

• Abstraction Function (AF) gives the abstract state
– obj = abstract state
– this = concrete state (record with fields .last and .list)
– AF relates abstract state to the current concrete state

okay that “last” is not involved here

– specifications only talk about “obj”, not “this”
“this” will appear in our reasoning



Documenting an ADT Implementation

• We also need to document the ADT implementation
– for this, we need two new tools

 Abstraction Function
defines what abstract state the field values currently represent
only needs to be defined when RI is true

 Representation Invariants (RI)
facts about the field values that should always be true
defines what field values are allowed
AF only needs to apply when RI is true



Documenting the FastList ADT

class FastLastList implements FastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  readonly last: bigint | undefined;
  readonly list: List<bigint>;
  …

}

• Representation Invariant (RI) holds info about this.last
– fields cannot have just any number and list of numbers
– they must fit together by satisfying RI

last must be the last number in the list stored



Correctness of FastList Constructor

class FastLastList implements FastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  readonly last: bigint | undefined;
  readonly list: List<bigint>;

  constructor(L: List<bigint>) {
    this.list = L;
    this.last = last(this.list);
  }

  …

• Constructor must ensure that RI holds at end
– we can see that it does in this case
– since we don’t mutate, they will always be true



Correctness of FastList Constructor

class FastLastList implements FastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  readonly last: bigint | undefined;
  readonly list: List<bigint>;

  // makes obj = L
  constructor(L: List<bigint>) {
    this.list = L;
    this.last = last(this.list);
  }

• Constructor must create the requested abstract state
– client wants obj to be the passed in list
– we can see that obj	=	this.list	=	L



Correctness of getLast

class FastLastList implements FastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  …

  // @returns last(obj)
  getLast = (): bigint | undefined => {
    return this.last;
  };
}

• Use both RI and AF to check correctness

last(obj)		 =	last(this.list)	 	 	 	 by AF
	 	 	 =	this.last	 	 	 	 	 by RI



Correctness of ADT implementation

• Check that the constructor…
– creates a concrete state satisfying RI
– creates the abstract state required by the spec

• Check the correctness of each method…
– check value returned is the one stated by the spec
– may need to use both RI and AF



ADTs: the Good and the Bad

• Provides data abstraction
– can change data structures without breaking clients

• Comes at a cost
– more work to specify and check correctness

• Not everything needs to be an ADT
– don’t be like Java and make everything a class

• Prefer concrete types for most things
– concrete types are easier to think about
– introduce ADTs when the first change occurs



Immutable Queues



Queue

• A queue is a list that can only be changed two ways:
– add elements to the front
– remove elements from the back

// List that only supports adding to the front and
// removing from the end
interface NumberQueue {

  // @returns len(obj)
  size: () => bigint;

  // @returns cons(x, obj)
  enqueue: (x: bigint) => NumberQueue;

  // @requires len(obj) > 0
  // @returns (x, Q) with obj = concat(Q, cons(x, nil))
  dequeue: () => [bigint, NumberQueue];
}

observer

producer

producer

last(obj)	=	x	 by HW4 problem 5!



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {
  // AF: obj = this.items
  readonly items: List<bigint>;

• Easiest implementation is concrete = abstract state
– just store the abstract state in a field
– (see HW5)

• Still requires extra work to check correctness…
– abstraction barrier comes with a cost



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {
  // AF: obj = this.items
  readonly items: List<bigint>;

  // @returns len(obj)
  size = (): bigint => {
    return len(this.items);
  };

• Correctness of size:

	 len(this.items)	=	len(obj)	    by AF

nothing is straight from the spec anymore



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {
  // AF: obj = this.items
  readonly items: List<bigint>;

  // makes obj = items
  constructor(items: List<bigint>) {
    this.items = items;
  }

• Correctness of constructor:

items	 =	this.items	 	 	 	 	 (from code)
	 	 =	obj	 	 	 	 	 	 AF



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {
  // AF: obj = this.items
  readonly items: List<bigint>;

  // @returns cons(x, obj)
  enqueue = (x: bigint): NumberQueue => {
    return new ListQueue(cons(x, this.items));
  };

• Correctness of enqueue:

return	value	 =	cons(x,	this.items)	 	 	 spec of constructor
	 	 	 =	cons(x,	obj)	 	 	 	 AF



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {
  // AF: obj = this.items
  readonly items: List<bigint>;

  // @requires len(obj) > 0
  // @returns (x, Q) with obj = concat(Q, cons(x, nil))
  dequeue = (): [bigint, NumberQueue] => {
 return [last(this.items),
            prefix(len(this.items) – 1n, this.items)];
  };

• Declarative spec, so more reasoning is required!
– also, slower than necessary (ϴ(n) dequeue)
– we’ll skip correctness here and do something faster in a moment...



Summary of ListQueue

• Simplest possible implementation of ADT
– abstract state = concrete state of one field

• Reasoning about every method is more complex
– must apply AF to relate return value to spec’s postcondition

code uses fields, but postcondition uses “obj”

– this is the cost of the abstraction barrier

• Will use this approach to start HW5



Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

  // AF: obj = concat(this.front, rev(this.back))
  readonly front: List<bigint>;
  readonly back: List<bigint>;   // in reverse order

• Back part stored in reverse order
– head of front is the first element
– head of back is the last element

1 2 nil

4 3 nil

this.front	=

this.back	=

1 2

4 3nil

obj	=



Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

  // AF: obj = concat(this.front, rev(this.back))
  // RI: if this.back = nil, then this.front = nil
  readonly front: List<bigint>;
  readonly back: List<bigint>;

• If back is nil, then the queue is empty
– if back	=	nil, then front	=	nil (by RI) and thus

	 obj	 =
	 	
	 	



Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

  // AF: obj = concat(this.front, rev(this.back))
  // RI: if this.back = nil, then this.front = nil
  readonly front: List<bigint>;
  readonly back: List<bigint>;

• If back is nil, then the queue is empty
– if back	=	nil, then front	=	nil (by RI) and thus

	 obj	 =	concat(nil,	rev(nil))	 	 	 	 by AF
	 	 =	rev(nil)	 	 	 	 	 	 def of concat
	 	 =	nil	 	 	 	 	 	 	 def of rev

– if the queue is not empty, then back is not nil
(311 alert: this is the contrapositive)



Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

  // AF: obj = concat(this.front, rev(this.back))
  // RI: if this.back = nil, then this.front = nil
  readonly front: List<bigint>;
  readonly back: List<bigint>;

  // makes obj = concat(front, rev(back))
  constructor(front: List<bigint>, back: List<bigint>) {
    …
  }

• Will implement this later…



Implementing a Queue with Two Lists

// AF: obj = concat(this.front, rev(this.back))
readonly front: List<bigint>;
readonly back: List<bigint>;

// @returns len(obj)
size = (): bigint => {
  return len(this.front) + len(this.back);
};

• Correctness of size:

len(obj)	 =
	 	
	 	



Implementing a Queue with Two Lists

// AF: obj = concat(this.front, rev(this.back))
readonly front: List<bigint>;
readonly back: List<bigint>;

// @returns len(obj)
size = (): bigint => {
  return len(this.front) + len(this.back);
};

• Correctness of size:

len(obj)	 =	len(concat(this.front,	rev(this.back)))	 	 by AF
	 	 =	len(this.front)	+	len(rev(this.back))	 	 by Example 3
	 	 =	len(this.front)	+	len(this.back)	 	 	 by Example 4



Implementing a Queue with Two Lists

// AF: obj = concat(this.front, rev(this.back))
readonly front: List<bigint>;
readonly back: List<bigint>;

// @returns cons(x, obj)
enqueue = (x: bigint): NumberQueue => {
  return new ListPairQueue(cons(x, this.front), this.back)
}

• Correctness of enqueue:

ret	value	=



Implementing a Queue with Two Lists

// AF: obj = concat(this.front, rev(this.back))
readonly front: List<bigint>;
readonly back: List<bigint>;

// @returns cons(x, obj)
enqueue = (x: bigint): NumberQueue => {
  return new ListPairQueue(cons(x, this.front), this.back)
}

• Correctness of enqueue:

ret	value	=	concat(cons(x,	this.front),	rev(this.back))	 (constructor)
		 	 =	cons(x,	concat(this.front,	rev(this.back))	 def of concat
	 	 =	cons(x,	obj)	 	 	 	 	 	 	 AF



Implementing a Queue with Two Lists

// AF: obj = concat(this.front, rev(this.back))
readonly front: List<bigint>;
readonly back: List<bigint>;

// @requires len(obj) > 0
// @returns (x, Q) with obj = concat(Q, cons(x, nil))
dequeue = (): [bigint, NumberQueue] => {
  return [this.back.hd,
          new ListPairQueue(this.front, this.back.tl)];
};

– as noted previously, precondition means this.back	≠	nil
– as we know, this means this.back	=	cons(x,	L)

for some x	:	ℤ and some L	:	List



Implementing a Queue with Two Lists

// AF: obj = concat(this.front, rev(this.back))
readonly front: List<bigint>;
readonly back: List<bigint>;

// @requires len(obj) > 0
// @returns (x, Q) with obj = concat(Q, cons(x, nil))
dequeue = (): [bigint, NumberQueue] => {
  return [this.back.hd,
          new ListPairQueue(this.front, this.back.tl)];
}

– will need one other fact    (“associativity of concat”)

concat(A,	concat(B,	C))	=	concat(concat(A,	B),	C)	 for	any	A,	B,	C	:	List

1 2 nil 3 4 nil 5 6 nil

A B C



Implementing a Queue with Two Lists

// @requires len(obj) > 0
// @returns (x, Q) with obj = concat(Q, cons(x, nil))
dequeue = (): [bigint, NumberQueue] => {
  return [this.back.hd,
          new ListPairQueue(this.front, this.back.tl)];
}

– this.back	=	cons(x,	L)	for	some	x	:	ℝ	and	some	L	:	List

obj	 =	



Implementing a Queue with Two Lists

// @requires len(obj) > 0
// @returns (x, Q) with obj = concat(Q, cons(x, nil))
dequeue = (): [bigint, NumberQueue] => {
  return [this.back.hd,
          new ListPairQueue(this.front, this.back.tl)];
}

– this.back	=	cons(x,	L)	for	some	x	:	ℝ	and	some	L	:	List

obj	 =	concat(this.front,	rev(this.back))	 	 	 	 by AF
	 =	concat(this.front,	rev(cons(x,	L)))	 	 	 	 since back	=	…
	 =	concat(this.front,	concat(rev(L),	cons(x,	nil)))	 def of rev
	 =	concat(concat(this.front,	rev(L)),	cons(x,	nil))	 assoc of concat

x	=	this.back.hd	and	L	=	this.back.tl
Q	=	concat(this.front,	rev(L))
				=	concat(this.front,	rev(this.back.tl))	=	result	of	constructor	call



Implementing a Queue with Two Lists

// AF: obj = concat(this.front, rev(this.back))
// RI: if this.back = nil, then this.front = nil
readonly front: List<bigint>;
readonly back: List<bigint>;

// makes obj = concat(front, rev(back))
constructor(front: List<bigint>, back: List<bigint>) {
  if (back.kind === “nil”) {
    this.front = nil;
    this.back = rev(front);
  } else {
    this.front = front;
    this.back = back;
  }

}

• Need to check that RI holds at end of constructor

holds since this.back	≠	nil

holds since this.front	=	nil



Implementing a Queue with Two Lists

// AF: obj = concat(this.front, rev(this.back))
// RI: if this.back = nil, then this.front = nil
readonly front: List<bigint>;
readonly back: List<bigint>;

// makes obj = concat(front, rev(back))
constructor(front: List<bigint>, back: List<bigint>) {
  if (back.kind === “nil”) {
    this.front = nil;
    this.back = rev(front);
  } else {
    this.front = front;
    this.back = back;
  }

}

• Need to check this creates correct abstract state

obj	=	concat(front,	rev(back))	

obj	=	concat(nil,	rev(rev(front)))		??



Implementing a Queue with Two Lists

// AF: obj = concat(this.front, rev(this.back))
// RI: if this.back = nil, then this.front = nil
readonly front: List<bigint>;
readonly back: List<bigint>;

constructor(front: List<bigint>, back: List<bigint>) {
  if (back.kind === “nil”) {
    this.front = nil;
    this.back = rev(front);
  } else {
    …
  }

}

obj	 =	concat(nil,	rev(rev(front)))	 	 	 	 	 AF
	 =	concat(nil,	front)	 	 	 	 	 	 	 because I said so
	 =	front	 	 	 	 	 	 	 	 	 	 def of concat
	 =	concat(front,	nil)	 	 	 	 	 	 	 Lemma 2
	 =	concat(front,	rev(nil))	 	 	 	 	 	 def of rev
	 =	concat(front,	rev(back))	 	 	 	 	 	 since back	=	nil


