

CSE 331

Reasoning About Straight-Line Code

James Wilcox & Kevin Zatloukal

Inductive Data Types

- Previous saw records, tuples, and unions
 - very useful but limited
 can only create types that are "small" in some sense
 - missing one more way of defining types
 arguably the most important
- One critical element is missing: recursion

 Java classes can have fields of same type, but records cannot
- Inductive data types are defined recursively
 - combine union with recursion

Inductive Data Types

- Describe a set by ways of creating its elements
 - each is a "constructor"

```
type T := C(x : \mathbb{Z}) \mid D(x : \mathbb{Z}, y : T)
```

- second constructor is recursive
- can have any number of arguments (even none)

will leave off the parentheses when there are none

Examples of elements

```
C(1)
D(2, C(1))
D(3, D(2, C(1)))
```

in math, these are **not** function calls

Inductive Data Types

Each element is a description of how it was made

```
C(1)
D(2, C(1))
D(3, D(2, C(1)))
```

Equal when they were made exactly the same way

```
- C(1) \neq C(2)

- D(2, C(1)) \neq D(3, C(1))

- D(2, C(1)) \neq D(2, C(2))

- D(1, D(2, C(3))) = D(1, D(2, C(3)))
```

Natural Numbers

```
type \mathbb{N} := zero \mid succ(n : \mathbb{N})
```

Inductive definition of the natural numbers

```
zero 0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3
```

The most basic set we have is defined inductively!

Even Natural Numbers

```
type \mathbb{E} := \text{zero} \mid \text{two-more}(n : \mathbb{E})
```

Inductive definition of the even natural numbers

```
zero 0
two-more(zero) 2
two-more(two-more(zero)) 4
two-more(two-more(two-more(zero))) 6
```

Lists

type List := nil | cons(x :
$$\mathbb{Z}$$
, L : List)

Inductive definition of lists of integers

nil
$$\approx$$
 [] $cons(3, nil)$ \approx [3] $cons(2, cons(3, nil))$ \approx [2, 3] $cons(1, cons(2, cons(3, nil)))$ \approx [1, 2, 3]

"Lists are the original data structure for functional programming, just as arrays are the original data structure of imperative programming"

Ravi Sethi

we will work with lists in HW3+ and arrays HW7+

- TypeScript does not natively support inductive types
 - some "functional" languages do (e.g., OCaml and ML)
- We must think of a way to cobble them together...
 - our answer is a design pattern

Design Patterns

- Introduced in the book of that name
 - written by the "Gang of Four"
 Gamma, Helm, Johnson, Vlissides
 - worked in C++ and SmallTalk
- Found that they independently developed many of the same solutions to recurring problems
 - wrote a book about them
- Many are problems with 00 languages
 - authors worked in C++ and SmallTalk
 - some things are **not easy** to do in those languages

Type Narrowing with Records

- Use a literal field to distinguish records types
 - require the field to have one specific value
 - called a "tag" field

cleanest way to make unions of records

```
type T1 = {kind: "T1", a: bigint, b: number};
type T2 = {kind: "T2" a: bigint, b: string};

const x: T1 | T2 = ...;
if (x.kind === "T1") { // legal for either type
   console.log(x.b); // must be T1... x.b is a number
} else {
   console.log(x.b); // must be T2... x.b is a string
}
```

Inductive Data Type Design Pattern

```
type T := C(x : \mathbb{Z}) \mid D(x : \mathbb{S}^*, t : T)
```

Implement in TypeScript as

Inductive Data Type Design Pattern

```
type T := A \mid B \mid C(x : \mathbb{Z}) \mid D(x : \mathbb{S}^*, t : T)
```

Implement in TypeScript as

```
type List := nil | cons(x : \mathbb{Z}, L : List)
```

Implemented in TypeScript as

– fields should also be "readonly"

How to check if a value mylist is nil?

```
if (mylist.kind === "nil") {
   ...
}
```

Make this look more like math notation...

- use <u>only</u> these two functions to create Lists
 do not create the records directly
- note that we only have one instance of nil
 this is called a "singleton" (a design pattern)

Make this look more like math notation...

```
const nil: List = {kind: "nil"};
const cons = (hd: bigint, tl: List): List => { .. };
```

Can now write code like this:

Make this look more like math notation...

```
const nil: List = {kind: "nil"};
const cons = (hd: bigint, tl: List): List => { .. };
```

- Still not perfect:
 - JS "===" (references to same object) does not match "="

```
cons(1, cons(2, nil)) === cons(1, cons(2, nil)) // false!
```

need to define an equal function for this

Objects are equal if they were built the same way

```
type List = {kind: "nil"}
          | {kind: "cons", hd: bigint, tl: List};
const equal = (L: List, R: List): boolean => {
  if (L.kind === "nil") {
    return R === nil;
  } else {
    if (R.kind === "nil") {
      return false;
    } else {
      return L.hd === R.hd && equal(L.tl, R.tl);
};
```

Functions

Code Without Mutation

- Saw all types of code without mutation:
 - straight-line code
 - conditionals
 - recursion
- This is all that there is
- Saw TypeScript syntax for these already...

Code Without Mutation

Example function with all three types

```
// n must be a non-negative integer
const f = (n: bigint): bigint => {
  if (n === 0n) {
    return 1n;
  } else {
    return 2n * f(n - 1n);
  }
};
```

Recall: Natural Numbers

```
type \mathbb{N} := zero \mid succ(prev: \mathbb{N})
```

Inductive definition of the natural numbers

```
zero 0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3
```

Recall: Natural Numbers

```
type \mathbb{N} := \text{zero} \mid \text{succ}(\text{prev: }\mathbb{N})
```

Potential definition in TypeScript

Induction on Natural Numbers

Could use a type that only allows natural numbers:

Cleaner definition of the function (though inefficient)

Structural Recursion

- Inductive types: build new values from existing ones
 - only zero exists initially
 - build up 5 from 4 (which is built from 3 etc.)

4 is the argument to the constructor of 5 = succ(4)

- Structural recursion: recurse on smaller parts
 - call on n recurses on n.prev

n.prev is the <u>argument</u> to the constructor (succ) used to create n

– guarantees no infinite loops!

limit to structural recursion whenever possible

- We will try to restrict ourselves to structural recursion
 - for both math and TypeScript

Defining Functions in Math

Saw math notation for defining functions, e.g.:

func
$$f(n) := 2n + 1$$
 for any $n : \mathbb{N}$

- We need recursion to define interesting functions
 - we will primarily use structural recursion
- Inductive types fit esp. well with pattern matching
 - every object is created using some constructor
 - match based on which constructor was used (last)

Length of a List

Mathematical definition of length

```
\begin{array}{ll} \text{func len(nil)} & := 0 \\ & \text{len(cons(x,S))} & := 1 + \text{len(S)} & \text{for any } x \in \mathbf{Z} \\ & \text{and any } S \in \text{List} \end{array}
```

- any list is either nil or cons(x, L) for some x and L
- cases are exclusive and exhaustive

Length of a List

Mathematical definition of length

```
\begin{array}{ll} \text{func len(nil)} & := 0 \\ & \text{len(cons(x,S))} & := 1 + \text{len(S)} & \text{for any } x \in \mathbb{Z} \\ & \text{and any } L \in \text{List} \end{array}
```

Translation to TypeScript

```
const len = (L: List): bigint => {
  if (L.kind === "nil") {
    return On;
  } else {
    return 1n + len(L.tl);
  }
};
```

Concatenating Two Lists

Mathematical definition of concat(L, R)

```
\begin{aligned} & \text{func concat(nil, R)} & := & R & & \text{for any R} \in List \\ & & \text{concat(cons(x, S), R)} & := & \text{cons(x, concat(S, R))} & & \text{for any x} \in \mathbb{Z} \text{ and} \\ & & & \text{any S, R} \in List \end{aligned}
```

concat(L, R) defined by pattern matching on L (not R)

Concatenating Two Lists

Mathematical definition of concat(L, R)

```
\begin{aligned} & \text{func concat(nil, R)} & := & R & & \text{for any R} \in List \\ & & \text{concat(cons(x, S), R)} & := & \text{cons(x, concat(S, R))} & & \text{for any x} \in \mathbb{Z} \text{ and} \\ & & & \text{any S, R} \in List \end{aligned}
```

Translation to TypeScript

Example

- See ex3 on the course website
 - Simple use of Nat in a webapp

Formalizing Specifications

Correctness Levels

Description	Testing	Tools	Reasoning
small # of inputs	exhaustive		
straight from spec	heuristics	type checking	code reviews
no mutation	u	libraries	calculation induction
local variable mutation	u	и	Floyd logic
array mutation	u	u	for-any facts
heap state mutation	u	u	rep invariants

"straight from spec" requires us to have a <u>formal</u> spec!

Formalizing a Specification

- Sometimes the instructions are written in English
 - English is often imprecise or ambiguous
- First step is to "formalize" the specification:
 - translate it into math with a precise meaning
- How do we tell if the specification is wrong?
 - specifications can contain bugs
 - we can only test our definition on some examples
 (formal) reasoning can only be used after we have a formal spec
- Usually best to start by looking at some examples

Definition of Sum of Values in a List

Sum of a List: "add up all the values in the list"

Look at some examples...

```
L sum(L)

nil 0

cons(3, nil) 3

cons(2, cons(3, nil)) 2+3

cons(1, cons(2, cons(3, nil))) 1+2+3

...
```

Definition of Sum of Values in a List

Look at some examples...

```
L sum(L)

nil 0

cons(3, nil) 3

cons(2, cons(3, nil)) 2+3

cons(1, cons(2, cons(3, nil))) 1+2+3

...
```

Mathematical definition

```
func sum(nil) := sum(cons(x, S)) := for any x \in \mathbb{Z} and any S \in List
```

Sum of Values in a List

Mathematical definition of sum

```
func sum(nil) := 0 
 sum(cons(x, S)) := x + sum(S) for any x \in \mathbb{Z} and any S \in List
```

Translation to TypeScript

```
const sum = (L: List): bigint => {
  if (L.kind === "nil") {
    return On;
  } else {
    return L.hd + sum(L.tl);
  }
};
```

Definition of Reversal of a List

Reversal of a List: "same values but in reverse order"

note that this English spec is declarative!

Look at some examples...

```
L rev(L)

nil nil

cons(3, nil) cons(3, nil)

cons(2, cons(3, nil)) cons(3, cons(2, nil))

cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))

...
```

Definition of Reversal of a List

Look at some examples...

```
L rev(L)

nil nil

cons(3, nil) cons(3, nil)

cons(2, cons(3, nil)) cons(3, cons(2, nil))

cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))
```

Draw a picture?

Reversing A Lists

Draw a picture?

Mathematical definition of rev

func rev(nil)
$$:=$$
 rev(cons(x, S)) $:=$

for any $x \in \mathbb{Z}$ and any $S \in List$

Reversing A Lists

Mathematical definition of rev

```
\begin{array}{ll} \text{func rev(nil)} & := \text{ nil} \\ & \text{rev(cons(x, S))} & := \text{concat(rev(S), cons(x, nil))} & \text{for any } x \in \mathbb{Z} \text{ and} \\ & & \text{any } S \in \text{List} \end{array}
```

- Other definitions are possible, but this is simplest
- No help from reasoning tools until later
 - only have testing and thinking about what the English means
- Always make definitions as simple as possible

Reasoning

Review: Software Development Process

Given: a problem description (in English)

Reasoning

- "Thinking through" what the code does on <u>all</u> inputs
 - neither testing nor type checking can do this
- Required in principle and in practice
 - a professional responsibility to know what your code does
 - in practice, "reasoning is not optional:
 either reason up front or debug and then reason"
- Can be done formally or informally
 - most professionals reason informally requires years of practice
 - we will teach formal reasoning
 steppingstone to informal reasoning and needed for the hardest problems

Correctness Levels

Description	Testing	Tools	Reasoning	
small # of inputs	exhaustive			
straight from spec	heuristics	type checking	code reviews	HW3
no mutation	и	libraries	calculation induction	HW4 HW5
local variable mutation	u	u	Floyd logic	HW6
array mutation	u	u	for-any facts	HW7
heap state mutation	u	и	rep invariants	HW8

Facts

- Basic inputs to reasoning are "facts"
 - things we know to be true about the variables
 - typically, "=" or "≤"

```
// n must be a natural number
const f = (n: bigint): bigint => {
  const m = 2n * n;
  return (m + 1n) * (m - 1n);
};
find facts by reading along path
  from top to return statement
```

At the return statement, we know these facts:

```
- n \in \mathbb{N} (or n \in \mathbb{Z} and n \ge 0)

- m = 2n
```

Facts

- Basic inputs to reasoning are "facts"
 - things we know to be true about the variables
 - typically, "=" or "≤"

```
// n must be a natural number
const f = (n: bigint): bigint => {
  const m = 2n * n;
  return (m + 1n) * (m - 1n);
};
```

- No need to include the fact that n is an integer $(n \in \mathbb{Z})$
 - that is true, but the type checker takes care of that
 - no need to repeat reasoning done by the type checker

Implications

- We can use the facts we know to prove more facts
 - if we can prove R using facts P and Q,
 we say that R "follows from" or "is implied by" P and Q
 - proving this fact is proving an "implication"
- Proving implications is necessary for checking correctness...

Checking Correctness

- Specifications include two kinds of facts
 - promised facts about the inputs (P and Q)
 - required facts about the outputs (R)
- Checking correctness is just proving implications
 - proving facts about the return values
- Two ways reasoning could be required:
 - declarative spec has facts that must hold for the return value
 - different imperative spec: must check expressions are "="

Implications

- We can use the facts we know to prove more facts
 - if we can prove R using facts P and Q,
 we say that R "follows from" or "is implied by" P and Q
- Proving implications is the core step of reasoning
 - other techniques output implications for us to prove
- The techniques we will learn are
 - proof by calculation
 - proof by cases

Proof by Calculation

- Proves an implication
 - fact to be shown is an equation or inequality
- Uses known facts and definitions
 - latter includes, e.g., the fact that len(nil) = 0

Example Proof by Calculation

- Given x = y and $z \le 10$, prove that $x + z \le y + 10$
 - show the third fact follows from the first two
- Start from the left side of the inequality to be proved

$$x + z = y + z \le y + 10$$

since $x = y$ since $z \le 10$

All together, this tells us that $x + z \le y + 10$

Example Proof by Calculation

- Given x = y and $z \le 10$, prove that $x + z \le y + 10$
 - show the third fact follows from the first two
- Start from the left side of the inequality to be proved

$$x + z = y + z$$
 since $x = y$
 $\leq y + 10$ since $z \leq 10$

- easier to read when split across lines
- "calculation block", includes explanations in right column proof by calculation means using a calculation block
- "=" or "≤" relates that line to the <u>previous</u> line

Calculation Blocks

Chain of "=" shows first = last

$$a = b$$
 $= c$
 $= d$

- proves that a = d
- all 4 of these are the same number

Calculation Blocks

• Chain of "=" and "≤" shows first ≤ last

$$x+z$$
 = $y+z$ since $x=y$
 $\leq y+10$ since $z \leq 10$
= $y+3+7$
 $\leq w+7$ since $y+3 \leq w$

- each number is equal or strictly larger that previous
 last number is strictly larger than the first number
- analogous for "≥"

```
// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 1$ " and " $y \ge 1$ "
- Correct if the return value is a positive integer

```
x + y
```

```
// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 1$ " and " $y \ge 1$ "
- Correct if the return value is a positive integer

$$x + y \ge x + 1$$
 since $y \ge 1$
 $\ge 1 + 1$ since $x \ge 1$
 $= 2$
 ≥ 1

- calculation shows that $x + y \ge 1$

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 9$ " and " $y \ge -8$ "
- Correct if the return value is a positive integer

```
x + y
```

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 9$ " and " $y \ge -8$ "
- Correct if the return value is a positive integer

$$x + y \ge x + -8$$
 since $y \ge -8$
 $\ge 9 - 8$ since $x \ge 9$
 $= 1$

```
// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 4$ " and " $y \ge 5$ "
- Correct if the return value is 10 or larger

```
x + y
```

```
// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 4$ " and " $y \ge 5$ "
- Correct if the return value is 10 or larger

$$x + y \ge x + 5$$
 since $y \ge 5$
 $\ge 4 + 5$ since $x \ge 4$
 $= 9$

proof doesn't work because the code is wrong!

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts "x > 8" and "y > -9"
- Correct if the return value is a positive integer

$$x + y > x + -9$$
 since $y > -9$
> 8 - 9 since $x > 8$
= -1

proof doesn't work because the proof is wrong

warning: avoid using ">" (or "<") multiple times in a calculation block</pre>

Using Definitions in Calculations

- Most useful with function calls
 - cite the definition of the function to get the return value
- For example:

```
\begin{aligned} \text{func sum(nil)} &:= 0 \\ \text{sum(cons(x, L))} &:= x + \text{sum(L)} & \text{for any } x \in \mathbb{Z} \\ & \text{and any } L \in \text{List} \end{aligned}
```

- Can cite facts such as
 - sum(nil) = 0
 - sum(cons(a, cons(b, nil))) = a + sum(cons(b, nil))

second case of definition with x = a and L = cons(b, nil)

Using Definitions in Calculations

```
\begin{aligned} \text{func sum(nil)} &:= 0 \\ \text{sum(cons(x, L))} &:= x + \text{sum(L)} & \text{for any } x \in \mathbb{Z} \\ & \text{and any } L \in \text{List} \end{aligned}
```

- Know " $a \ge 0$ ", " $b \ge 0$ ", and "L = cons(a, cons(b, nil))"
- Prove the "sum(L)" is non-negative

```
sum(L)
```

Using Definitions in Calculations

```
func sum(nil) := 0 sum(cons(x, L)) := x + sum(L) \qquad \text{for any } x \in \mathbb{Z} and any L \in List
```

- Know "a ≥ 0 ", "b ≥ 0 ", and "L = cons(a, cons(b, nil))"
- Prove the "sum(L)" is non-negative

```
sum(L)= sum(cons(a, cons(b, nil)))since L = cons(a, cons(b, nil))= a + sum(cons(b, nil)))def of sum= a + b + sum(nil)def of sum= a + bdef of sum\geq 0 + bsince a \geq 0\geq 0since b \geq 0
```

Proof by Calculation

What We Get from Reasoning

- If the proof works, the code is correct
 - why reasoning is useful for finding bugs
- If the code is incorrect, the proof will not work
- If the proof does not work, the code is probably wrong

could potentially be an issue with the proof (e.g., two "<"s)

but that is a rare occurrence

Finding Facts at a Return Statement

Consider this code

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  const L: List = cons(a, cons(b, nil));
  if (a >= 0n && b >= 0n)
    return sum(L);
```

find facts by reading along <u>path</u> from top to return statement

• Known facts include " $a \ge 0$ ", " $b \ge 0$ ", and "L = cons(...)"

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
  if (y < 0n) {
    return x + y;
  } else {
    return x - 1n;
  }
};</pre>
```

• Known fact in then (top) branch: " $y \le -1$ "

```
x + y
```

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
  if (y < 0n) {
    return x + y;
  } else {
    return x - 1n;
  }
};</pre>
```

• Known fact in then (top) branch: " $y \le -1$ "

```
x + y \le x + -1 since y \le -1

< x + 0 since -1 < 0

= x
```

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
  if (y < 0n) {
    return x + y;
  } else {
    return x - 1n;
  }
};</pre>
```

• Known fact in else (bottom) branch: " $y \ge 0$ "

x - 1

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
  if (y < 0n) {
    return x + y;
  } else {
    return x - 1n;
  }
};</pre>
```

• Known fact in else (bottom) branch: " $y \ge 0$ "

```
x-1 < x + 0 since -1 < 0
= x
```

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
  if (y < 0n) {
    return x + y;
  } else {
    return x - 1n;
  }
};</pre>
```

- Conditionals give us extra known facts
 - get known facts from
 - 1. specification
 - 2. conditionals
 - 3. constant declarations

find facts by reading along <u>path</u> from top to the return statement

Proving Correctness with Multiple Claims

- Need to check the claim from the spec at each <u>return</u>
- If spec claims multiple facts, then we must prove that <u>each</u> of them holds

```
// Inputs x and y are integers with x < y - 1
// Returns a number less than y and greater than x.
const f = (x: bigint, y, bigint): bigint => { ... };
```

- multiple known facts: $x : \mathbb{Z}$, $y : \mathbb{Z}$, and x < y 1
- multiple claims to prove: x < r and r < y
 where "r" is the return value
- requires two calculation blocks

Recall: Max With an Imperative Specification

```
// Returns a if a >= b and b if a < b
const max = (a: bigint, b, bigint): bigint => {
   if (a >= b) {
      return a;
   } else {
      return b;
   }
};
```

Example Correctness with Conditionals

```
// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: bigint, b, bigint): bigint => {
   if (a >= b) {
     return a;
   } else {
        return b;
   }
};
```

- Three different facts to prove at each return
- Two known facts in each branch (return value is "r"):
 - then branch: $a \ge b$ and r = a
 - else branch: a < b and r = b

Example Correctness with Conditionals

Correctness of return in "then" branch:

```
- r = a holds so "r = a or r = b" holds,
```

- r = a holds so " $r \ge a$ " holds, and

```
r = a
 \geq b since a \geq b
```

Example Correctness with Conditionals

```
// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: bigint, b, bigint): bigint => {
  if (a >= b) {
    return a;
  } else {
    return b;
    Know a < b and r = b
  }
};</pre>
```

Correctness of return in "else" branch:

```
r = b holds so "r = a or r = b" holds,
r = b holds so "r ≥ b" holds, and
r ≥ a holds since we have r > a:
```

```
r = b
> a since a < b
```

Sum of a List

```
const f = (a: bigint, b: bigint): bigint => {
  const L: List = cons(a, cons(b, nil));
  const s: number = sum(L); // = a + b
  ...
};
```

Can prove the claim in the comments by calculation

```
sum(L)
```

```
func sum(nil) := 0 
 sum(cons(x, L)) := x + sum(L) for any x \in \mathbb{Z} and any L \in List
```

Sum of a List

```
const f = (a: number, b: number): number => {
  const L: List = cons(a, cons(b, nil));
  const s: number = sum(L); // = a + b
  ...
};
```

Can prove the claim in the comments by calculation

```
sum(L) = sum(cons(a, cons(b, nil))) since L = ...

= a + sum(cons(b, nil)) def of sum

= a + b + sum(nil) def of sum

= a + b def of sum
```

```
func sum(nil) := 0 
 sum(cons(x, L)) := x + sum(L) for any x \in \mathbb{Z} and any L \in List
```

Sum of a List

```
const f = (a: number, b: number): number => {
  const L: List = cons(a, cons(b, nil));
  const s: number = sum(L); // = a + b
  ...
}
```

Can prove the claim in the comments by calculation

```
sum(cons(a, cons(b, nil))) = ... = a + b
```

For which values of a and b does this hold?

holds for <u>any</u> $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$

What We Have Proven

We proved by calculation that

```
sum(cons(a, cons(b, nil))) = a + b
```

- This holds for \underline{any} $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$
- We have proven infinitely many facts
 - $-\operatorname{sum}(\operatorname{cons}(3,\operatorname{cons}(5,\operatorname{nil}))) = 8$
 - $-\operatorname{sum}(\operatorname{cons}(-5,\operatorname{cons}(2,\operatorname{nil}))) = -3$
 - **—** ...
 - replacing all the 'a's and 'b's with those numbers gives a calculation proving the "=" for those numbers

What We Have Proven

We proved by calculation that

```
sum(cons(a, cons(b, nil))) = a + b
```

for any $a, b \in \mathbb{Z}$

- We can use this fact for any a and b we choose
 - our proof is a "recipe" that can be used for any a and b
 - just as a function can be used with any argument values, our proof can be used with any values for the "any" variables (any values satisfying the specification)
 - use "for any ..." to make clear which things are variables
- This is called a "direct proof" of the "for any" claim

Binary Trees

Binary Trees

type Tree := empty | node(
$$x : \mathbb{Z}$$
, L : Tree, R : Tree)

Inductive definition of binary trees of integers

node(1, node(2, empty, empty), node(3, empty, node(4, empty, empty))))

Height of a Tree

type Tree := empty | node(x: **Z**, L: Tree, R: Tree)

Height of a tree: "maximum steps to get to a leaf"

Height of a Tree

```
type Tree := empty | node(x: \mathbb{Z}, L: Tree, R: Tree)
```

Mathematical definition of height

Height of a Tree

```
type Tree := empty | node(x: \mathbb{Z}, L: Tree, R: Tree)
```

Mathematical definition of height

Using Definitions in Calculations

```
func height(empty) := -1
height(node(x, L, R)) := 1 + \max(\text{height(L)}, \text{height(R)})
for any x \in \mathbb{Z} and any L, R \in Tree
```

- **Suppose** "T = node(1, empty, node(2, empty, empty))"
- Prove that height(T) = 1

```
height(T)
```

Using Definitions in Calculations

```
func height(empty) := -1
height(node(x, L, R)) := 1 + \max(\text{height(L)}, \text{height(R)})
for any x \in \mathbb{Z} and any L, R \in Tree
```

- Suppose "T = node(1, empty, node(2, empty, empty))"
- Prove that height(T) = 1

```
height(T)
             = height(node(1, empty, node(2, empty, empty))
                                                                                 since T = ...
                                                                                 def of height
             = 1 + max(height(empty), height(node(2, empty, empty)))
             = 1 + \max(-1, \text{height}(\text{node}(2, \text{empty}, \text{empty})))
                                                                                 def of height
             = 1 + \max(-1, 1 + \max(\text{height}(\text{empty}), \text{height}(\text{empty})))
                                                                                 def of height
             = 1 + \max(-1, 1 + \max(-1, -1))
                                                                                 def of height (x 2)
             = 1 + \max(-1, 1 + -1)
                                                                                  def of max
             = 1 + \max(-1, 0)
             = 1 + 0
                                                                                  def of max
             = 1
```

Trees

- Trees are inductive types with a constructor that has 2+ recursive arguments
- These come up all the time...
 - no constructors with recursive arguments = "generalized enums"
 - constructor with 1 recursive arguments = "generalized lists"
 - constructor with 2+ recursive arguments = "generalized trees"
- Some prominent examples of trees:
 - HTML: used to describe UI
 - JSON: used to describe just about any data