
Reasoning About Straight-Line Code
James Wilcox & Kevin Zatloukal

CSE 331

Inductive Data Types

• Previous saw records, tuples, and unions
– very useful but limited

can only create types that are “small” in some sense

– missing one more way of defining types
arguably the most important

• One critical element is missing: recursion
Java classes can have fields of same type, but records cannot

• Inductive data types are defined recursively
– combine union with recursion

Inductive Data Types

• Describe a set by ways of creating its elements
– each is a “constructor”

type	T	:=		C(x	:	ℤ)		|		D(x	:	ℤ,		y	:	T)

– second constructor is recursive
– can have any number of arguments (even none)

will leave off the parentheses when there are none

• Examples of elements

C(1)
D(2,	C(1))
D(3,	D(2,	C(1)))

in math, these are not function calls

Inductive Data Types

• Each element is a description of how it was made

C(1)
D(2,	C(1))
D(3,	D(2,	C(1)))

• Equal when they were made exactly the same way

– C(1)	≠	C(2)
– D(2,	C(1))	≠	D(3,	C(1))
– D(2,	C(1))	≠	D(2,	C(2))

– D(1,	D(2,	C(3)))	=	D(1,	D(2,	C(3)))

Natural Numbers

 type	ℕ		:=		zero		|		succ(n	:	ℕ)

• Inductive definition of the natural numbers

zero		 	 	 	 	 	 	 0
succ(zero)	 	 	 	 	 	 1
succ(succ(zero))	 	 	 	 	 2
succ(succ(succ(zero)))		 	 	 3

The most basic set we have is defined inductively!

Even Natural Numbers

 type	𝔼	:=		zero		|		two-more(n	:	𝔼)

• Inductive definition of the even natural numbers

zero		 	 	 	 	 	 	 	 	 0
two-more(zero)	 	 	 	 	 	 	 2
two-more(two-more(zero))		 	 	 	 4
two-more(two-more(two-more(zero)))	 	 6

much better notation

	 	 	 type	List		:=		nil		|		cons(x	:	ℤ,		L	:	List)

• Inductive definition of lists of integers

nil	 	 	 	 	 	 	 	 ≈	[]
cons(3,	nil)	 	 	 	 	 	 ≈	[3]
cons(2,	cons(3,	nil))	 	 	 	 ≈	[2,	3]
cons(1,	cons(2,	cons(3,	nil)))	 	 ≈	[1,	2,	3]

Lists

array notation

1 2 3

“Lists are the original data structure for functional programming,
 just as arrays are the original data structure of imperative programming”

Ravi Sethi

we will work with lists in HW3+ and arrays HW7+

Inductive Data Types in TypeScript

• TypeScript does not natively support inductive types
– some “functional” languages do (e.g., OCaml and ML)

• We must think of a way to cobble them together…
– our answer is a design pattern

Design Patterns

• Introduced in the book of that name
– written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides

– worked in C++ and SmallTalk

• Found that they independently developed
many of the same solutions to recurring problems
– wrote a book about them

• Many are problems with OO languages
– authors worked in C++ and SmallTalk
– some things are not easy to do in those languages

Type Narrowing with Records

• Use a literal field to distinguish records types
– require the field to have one specific value
– called a “tag” field

cleanest way to make unions of records

type T1 = {kind: “T1”, a: bigint, b: number};
type T2 = {kind: “T2” a: bigint, b: string};

const x: T1 | T2 = …;
if (x.kind === “T1”) { // legal for either type
 console.log(x.b); // must be T1… x.b is a number
} else {
 console.log(x.b); // must be T2… x.b is a string
}

Inductive Data Type Design Pattern

type	T		:=		C(x	:	ℤ)		|	D(x	:	𝕊*	,	t	:	T)

• Implement in TypeScript as

type T = {kind: “C”, x: number}
 | {kind: “D”, x: string, t: T};

Inductive Data Type Design Pattern

type	T		:=		A		|		B		|		C(x	:	ℤ)		|	D(x	:	𝕊*,	t	:	T)

• Implement in TypeScript as

type T = {kind: “A”}
 | {kind: “B”}
 | {kind: “C”, x: bigint}
 | {kind: “D”, x: string, t: T};

Inductive Data Types in TypeScript

type	List		:=		nil		|		cons(x	:	ℤ,		L	:	List)

• Implemented in TypeScript as

type List = {kind: “nil”}
 | {kind: “cons”, hd: bigint, tl: List};

– fields should also be “readonly”

How to check if a value mylist is nil?
if (mylist.kind === “nil”) {
 …
}

Inductive Data Types in TypeScript

• Make this look more like math notation…

type List = {kind: “nil”}
 | {kind: “cons”, hd: bigint, tl: List};

const nil: List = {kind: “nil”};

const cons = (hd: bigint, tl: List): List => {
 return {kind: ”cons”, hd: hd, tl: tl};
}

– use only these two functions to create Lists
do not create the records directly

– note that we only have one instance of nil
this is called a “singleton” (a design pattern)

Inductive Data Types in TypeScript

• Make this look more like math notation…

const nil: List = {kind: “nil”};

const cons = (hd: bigint, tl: List): List => { .. };

• Can now write code like this:

const L: List = cons(1, cons(2, nil));

if (L === nil) {
 return L;
} else {
 return cons(L.hd, R); // head of L followed by R
}

if someone made their own nil,
then this would fail L

and it doesn’t typecheck

Inductive Data Types in TypeScript

• Make this look more like math notation…

const nil: List = {kind: “nil”};

const cons = (hd: bigint, tl: List): List => { .. };

• Still not perfect:
– JS “===” (references to same object) does not match “=”

cons(1, cons(2, nil)) === cons(1, cons(2, nil)) // false!

– need to define an equal function for this

Inductive Data Types in TypeScript

• Objects are equal if they were built the same way

type List = {kind: “nil”}
 | {kind: “cons”, hd: bigint, tl: List};

const equal = (L: List, R: List): boolean => {
 if (L.kind === “nil”) {
 return R === nil;
 } else {
 if (R.kind === “nil”) {
 return false;
 } else {
 return L.hd === R.hd && equal(L.tl, R.tl);
 }

 }

};

Functions

Code Without Mutation

• Saw all types of code without mutation:
– straight-line code
– conditionals
– recursion

• This is all that there is

• Saw TypeScript syntax for these already…

Code Without Mutation

Example function with all three types

 // n must be a non-negative integer
 const f = (n: bigint): bigint => {
 if (n === 0n) {
 return 1n;
 } else {
 return 2n * f(n – 1n);
 }

 };

What does this compute? 2n

Recall: Natural Numbers

 type	ℕ	:=		zero		|		succ(prev:	ℕ)

• Inductive definition of the natural numbers

zero		 	 	 	 	 	 	 0
succ(zero)	 	 	 	 	 	 1
succ(succ(zero))	 	 	 	 	 2
succ(succ(succ(zero)))		 	 	 3

Recall: Natural Numbers

 type	ℕ	:=		zero		|		succ(prev:	ℕ)

• Potential definition in TypeScript

type Nat = {kind: “zero”}
 | {kind: “succ”, prev: Nat};

const zero: Nat = { kind: “zero” };

const succ = (prev: Nat): Nat => {
 return {kind: ”succ”, prev: prev};
};

Induction on Natural Numbers

Could use a type that only allows natural numbers:

 const f = (n: Nat): bigint => {
 if (n.kind === “zero”) {
 return 1n;
 } else {
 return 2n * f(n.prev);
 }
 };

Cleaner definition of the function (though inefficient)

n.prev represents “n – 1”

Structural Recursion

• Inductive types: build new values from existing ones
– only zero exists initially
– build up 5 from 4 (which is built from 3 etc.)

4 is the argument to the constructor of 5 = succ(4)

• Structural recursion: recurse on smaller parts
– call on n recurses on n.prev

n.prev is the argument to the constructor (succ) used to create n

– guarantees no infinite loops!
limit to structural recursion whenever possible

• We will try to restrict ourselves to structural recursion
– for both math and TypeScript

Defining Functions in Math

• Saw math notation for defining functions, e.g.:

	 func	f(n)		:=		2n	+	1	 for	any	n	:	ℕ

• We need recursion to define interesting functions
– we will primarily use structural recursion

• Inductive types fit esp. well with pattern matching
– every object is created using some constructor
– match based on which constructor was used (last)

Length of a List

	 type	List	:=		nil		|		cons(hd:	ℤ,	tl:	List)

• Mathematical definition of length

 func		len(nil) :=		0
	 	 	len(cons(x,	S))	 :=		1	+	len(S)		 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	S	∈	List

– any list is either nil or cons(x, L) for some x and L
– cases are exclusive and exhaustive

Length of a List

• Mathematical definition of length

 func		len(nil) :=		0
	 	 	len(cons(x,	S))	 :=		1	+	len(S)		 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	L	∈	List

• Translation to TypeScript

const len = (L: List): bigint => {
 if (L.kind === “nil”) {
 return 0n;
 } else {
 return 1n + len(L.tl);
 }

};

straight from the spec

Concatenating Two Lists

• Mathematical definition of concat(L,	R)

func		concat(nil, R) :=		R	 	 	 	 	 for	any	R	∈	List
	 	concat(cons(x,	S),	R)	 :=		cons(x,	concat(S,	R))	 for	any	x	∈	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 	 						any	S,	R	∈	List

– concat(L,	R) defined by pattern matching on L (not R)

1 2 3 4 5 6

L

x S

R

Concatenating Two Lists

• Mathematical definition of concat(L,	R)

func		concat(nil, R) :=		R	 	 	 	 	 for	any	R	∈	List
	 	concat(cons(x,	S),	R)	 :=		cons(x,	concat(S,	R))	 for	any	x	∈	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 	 						any	S,	R	∈	List

• Translation to TypeScript

const concat = (L: List, R: List): List => {
 if (L.kind === “nil”) {
 return R;
 } else {
 return cons(L.hd, concat(L.tl, R));
 }
};

straight from the spec

Example

• See ex3 on the course website
– Simple use of Nat in a webapp

Formalizing Specifications

Correctness Levels

“straight from spec” requires us to have a formal spec!

Description Testing Tools Reasoning

small # of inputs exhaustive

straight from spec heuristics type checking code reviews

no mutation “ libraries calculation
induction

local variable mutation “ “ Floyd logic

array mutation “ “ for-any facts

heap state mutation “ “ rep invariants

Formalizing a Specification

• Sometimes the instructions are written in English
– English is often imprecise or ambiguous

• First step is to “formalize” the specification:
– translate it into math with a precise meaning

• How do we tell if the specification is wrong?
– specifications can contain bugs
– we can only test our definition on some examples

(formal) reasoning can only be used after we have a formal spec

• Usually best to start by looking at some examples

Definition of Sum of Values in a List

• Sum of a List: “add up all the values in the list”

• Look at some examples…

L sum(L)
nil 0
cons(3, nil) 3
cons(2, cons(3, nil)) 2+3
cons(1, cons(2, cons(3, nil))) 1+2+3
… …

Definition of Sum of Values in a List

• Look at some examples…

L sum(L)
nil 0
cons(3, nil) 3
cons(2, cons(3, nil)) 2+3
cons(1, cons(2, cons(3, nil))) 1+2+3
… …

• Mathematical definition

 func		sum(nil) :=		
	 	 	sum(cons(x,	S))	 :=		 	 	 	 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	S	∈	List

Sum of Values in a List

• Mathematical definition of sum

 func		sum(nil) :=		0
	 	 	sum(cons(x,	S))	 :=		x	+	sum(S)	 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	S	∈	List

• Translation to TypeScript

const sum = (L: List): bigint => {
 if (L.kind === “nil”) {
 return 0n;
 } else {
 return L.hd + sum(L.tl);
 }

};
straight from the spec

Definition of Reversal of a List

• Reversal of a List: “same values but in reverse order”

• Look at some examples…

L rev(L)
nil nil
cons(3, nil) cons(3, nil)
cons(2, cons(3, nil)) cons(3, cons(2, nil))
cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))
… …

note that this English spec is declarative!

Definition of Reversal of a List

• Look at some examples…

L rev(L)
nil nil
cons(3, nil) cons(3, nil)
cons(2, cons(3, nil)) cons(3, cons(2, nil))
cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))

• Draw a picture?

1 2 3

move 1 to end

reverse this too

Reversing A Lists

• Draw a picture?

• Mathematical definition of rev

func		rev(nil) :=		 	 	 	 	
	 	rev(cons(x,	S))	 :=		 	 	 	 	 	 	 for	any	x	∈	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 	 						any	S	∈	List

1 2 3

move 1 to end

reverse this too

Reversing A Lists

• Mathematical definition of rev

func		rev(nil) :=		nil	 	 	 	 	
	 	rev(cons(x,	S))	 :=		concat(rev(S),	cons(x,	nil))	 for	any	x	∈	ℤ	and
	 	 	 	 	 	 	 	 	 	 	 	 						any	S	∈	List

• Other definitions are possible, but this is simplest

• No help from reasoning tools until later
– only have testing and thinking about what the English means

• Always make definitions as simple as possible

Reasoning

Review: Software Development Process

Idea Generation

Given: a problem description (in English)

Type Checking Reasoning Testing

Debugging Beta Users

All Users

You get paid for reasoning and debugging!
Everything else can (and will) be automated.

Reasoning

• “Thinking through” what the code does on all inputs
– neither testing nor type checking can do this

• Required in principle and in practice
– a professional responsibility to know what your code does
– in practice, “reasoning is not optional:

either reason up front or debug and then reason”

• Can be done formally or informally
– most professionals reason informally

requires years of practice

– we will teach formal reasoning
steppingstone to informal reasoning and needed for the hardest problems

Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

straight from spec heuristics type checking code reviews

no mutation “ libraries calculation
induction

local variable mutation “ “ Floyd logic

array mutation “ “ for-any facts

heap state mutation “ “ rep invariants

HW3

HW4
HW5

HW6

HW7

HW8

Facts

• Basic inputs to reasoning are “facts”
– things we know to be true about the variables
– typically, “=” or “≤”

// n must be a natural number
const f = (n: bigint): bigint => {
 const m = 2n * n;
 return (m + 1n) * (m – 1n);
};

• At the return statement, we know these facts:
– n	∈	ℕ	 	 	 (or	n	∈	ℤ	and	n	≥	0)
– m	=	2n

find facts by reading along path
from top to return statement

Facts

• Basic inputs to reasoning are “facts”
– things we know to be true about the variables
– typically, “=” or “≤”

// n must be a natural number
const f = (n: bigint): bigint => {
 const m = 2n * n;
 return (m + 1n) * (m – 1n);
};

• No need to include the fact that n is an integer (n	∈	ℤ)
– that is true, but the type checker takes care of that
– no need to repeat reasoning done by the type checker

Implications

• We can use the facts we know to prove more facts
– if we can prove R using facts P and Q,

we say that R “follows from” or “is implied by” P and Q
– proving this fact is proving an “implication”

• Proving implications is necessary for checking correctness…

Checking Correctness

• Specifications include two kinds of facts
– promised facts about the inputs (P and Q)
– required facts about the outputs (R)

• Checking correctness is just proving implications
– proving facts about the return values

• Two ways reasoning could be required:
– declarative spec has facts that must hold for the return value
– different imperative spec: must check expressions are “=”

Implications

• We can use the facts we know to prove more facts
– if we can prove R using facts P and Q,

we say that R “follows from” or “is implied by” P and Q

• Proving implications is the core step of reasoning
– other techniques output implications for us to prove

• The techniques we will learn are
– proof by calculation
– proof by cases
– structural induction gives us two implications,

each usually proven by calculation

Proof by Calculation

• Proves an implication
– fact to be shown is an equation or inequality

• Uses known facts and definitions
– latter includes, e.g., the fact that len(nil)	=	0

Example Proof by Calculation

• Given x	=	y and z	≤	10, prove that x	+	z	≤	y	+	10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x	+	z
	 	

since x	=	y

=			y	+	z ≤		y	+	10

since z	≤	10

All together, this tells us that x	+	z		≤		y	+	10

Example Proof by Calculation

• Given x	=	y and z	≤	10, prove that x	+	z	≤	y	+	10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x	+	z	 =	y	+	z	 	 	 	 since x	=	y
	 	 ≤	y	+	10		 	 	 since z	≤	10	 	

– easier to read when split across lines
– “calculation block”, includes explanations in right column

proof by calculation means using a calculation block

– “=” or “≤” relates that line to the previous line

Calculation Blocks

• Chain of “=” shows first = last

a	 =	b
	 =	c	 	 	 	 	 	
	 =	d

– proves that a	=	d
– all 4 of these are the same number

Calculation Blocks

• Chain of “=” and “≤” shows first ≤ last

x	+	z	 =	y	+	z	 	 	 	 since x	=	y
	 	 ≤	y	+	10		 	 	 since z	≤	10
	 	 =	y	+	3	+	7
	 	 ≤	w	+	7	 	 	 	 since y	+	3	≤	w	

– each number is equal or strictly larger that previous
last number is strictly larger than the first number

– analogous for “≥”

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
 return x + y;
};

• Known facts “x	≥	1” and “y	≥	1”

• Correct if the return value is a positive integer

x	+	y	

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
 return x + y;
};

• Known facts “x	≥	1” and “y	≥	1”

• Correct if the return value is a positive integer

x	+	y	 ≥	x	+	1	 	 	 	 since y	≥	1
	 	 ≥	1	+	1	 	 	 	 since	x	≥	1
	 	 =	2
	 	 ≥	1	 	 	 	 	

– calculation shows that x	+	y	≥	1

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
 return x + y;
};

• Known facts “x	≥	9” and “y	≥	–8”

• Correct if the return value is a positive integer

x	+	y	

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
 return x + y;
};

• Known facts “x	≥	9” and “y	≥	–8”

• Correct if the return value is a positive integer

x	+	y	 ≥	x	+	-8	 	 	 	 since y	≥	-8
	 	 ≥	9	–	8	 	 	 	 since	x	≥	9
	 	 =	1

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: bigint, y, bigint): bigint => {
 return x + y;
};

• Known facts “x	≥	4” and “y	≥	5”

• Correct if the return value is 10 or larger

x	+	y	

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: bigint, y, bigint): bigint => {
 return x + y;
};

• Known facts “x	≥	4” and “y	≥	5”

• Correct if the return value is 10 or larger

x	+	y	 ≥	x	+	5	 	 	 	 since y	≥	5
	 	 ≥	4	+	5	 	 	 	 since	x	≥	4
	 	 =	9

proof doesn’t work because the code is wrong!

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
 return x + y;
};

• Known facts “x	>	8” and “y	>	–9”

• Correct if the return value is a positive integer

x	+	y	 >	x	+	-9	 	 	 	 since y	>	-9
	 	 >	8	-	9	 	 	 	 since	x	>	8
	 	 =	-1

warning: avoid using “>” (or “<“) multiple times in a calculation block

proof doesn’t work because the proof is wrong

Using Definitions in Calculations

• Most useful with function calls
– cite the definition of the function to get the return value

• For example:

 func		sum(nil) :=		0
	 	 	sum(cons(x,	L))	 :=		x	+	sum(L)	 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	L	∈	List

• Can cite facts such as
– sum(nil)	=	0
– sum(cons(a,	cons(b,	nil)))	=	a	+	sum(cons(b,	nil))

second case of definition with x	=	a and L	=	cons(b,	nil)

Using Definitions in Calculations

 func		sum(nil) :=		0
	 	 	sum(cons(x,	L))	 :=		x	+	sum(L)	 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	L	∈	List

• Know “a	≥	0”, “b	≥	0”, and “L	=	cons(a,	cons(b,	nil))”

• Prove the “sum(L)” is non-negative

sum(L)	

Using Definitions in Calculations

 func		sum(nil) :=		0
	 	 	sum(cons(x,	L))	 :=		x	+	sum(L)	 	 for	any	x	∈	ℤ
	 	 	 	 	 	 	 	 	 	 	 and	any	L	∈	List

• Know “a	≥	0”, “b	≥	0”, and “L	=	cons(a,	cons(b,	nil))”

• Prove the “sum(L)” is non-negative

sum(L)	 =	sum(cons(a,	cons(b,	nil))	 	 since L	=	cons(a,	cons(b,	nil))
	 	 =	a	+	sum(cons(b,	nil))	 	 	 def of	sum
	 	 =	a	+	b	+	sum(nil)	 	 	 	 def of	sum
	 	 =	a	+	b	 	 	 	 	 	 def of sum
	 	 ≥	0	+	b	 	 	 	 	 	 since a	≥	0
	 	 ≥	0	 	 	 	 	 	 	 since b	≥	0

Proof by Calculation

What We Get from Reasoning

• If the proof works, the code is correct
– why reasoning is useful for finding bugs

• If the code is incorrect, the proof will not work

• If the proof does not work, the code is probably wrong
could potentially be an issue with the proof (e.g., two “<”s)
but that is a rare occurrence

Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
 const L: List = cons(a, cons(b, nil));
 if (a >= 0n && b >= 0n)
 return sum(L);
 …

• Known facts include “a	≥	0”, “b	≥	0”, and “L	=	cons(…)”

find facts by reading along path
from top to return statement

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
 if (y < 0n) {
 return x + y;
 } else {
 return x – 1n;
 }
};

• Known fact in then (top) branch: “y	≤	-1”

x	+	y	

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
 if (y < 0n) {
 return x + y;
 } else {
 return x – 1n;
 }
};

• Known fact in then (top) branch: “y	≤	-1”

x	+	y	 ≤	x	+	-1	 	 	 	 since	y	≤	-1
	 	 <	x	+	0	 	 	 	 since	-1	<	0
	 	 =	x

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
 if (y < 0n) {
 return x + y;
 } else {
 return x – 1n;
 }
};

• Known fact in else (bottom) branch: “y	≥	0”

x	–	1		

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
 if (y < 0n) {
 return x + y;
 } else {
 return x – 1n;
 }
};

• Known fact in else (bottom) branch: “y	≥	0”

x	–	1		 <	x	+	0	 	 	 	 since	–1	<	0
	 	 =	x

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
 if (y < 0n) {
 return x + y;
 } else {
 return x – 1n;
 }
};

• Conditionals give us extra known facts
– get known facts from

1. specification
2. conditionals
3. constant declarations

find facts by reading along path
from top to the return statement

Proving Correctness with Multiple Claims

• Need to check the claim from the spec at each return

• If spec claims multiple facts, then
we must prove that each of them holds

// Inputs x and y are integers with x < y - 1
// Returns a number less than y and greater than x.
const f = (x: bigint, y, bigint): bigint => { .. };

– multiple known facts: x	:	ℤ,	y	:	ℤ,	and	x	<	y	–	1
– multiple claims to prove: x	<	r	and	r	<	y

where “r” is the return value

– requires two calculation blocks

Recall: Max With an Imperative Specification

// Returns a if a >= b and b if a < b
const max = (a: bigint, b, bigint): bigint => {
 if (a >= b) {
 return a;
 } else {
 return b;
 }

};

straight from the spec
(imperative spec)

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: bigint, b, bigint): bigint => {
 if (a >= b) {
 return a;
 } else {
 return b;
 }

};

• Three different facts to prove at each return

• Two known facts in each branch (return value is “r”):
– then branch: a	≥	b		and		r	=	a
– else branch:	 	 a	<	b		and		r	=	b

not straight from the spec
(declarative spec)

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: bigint, b, bigint): bigint => {
 if (a >= b) {
 return a;
 } else {
 return b;
 }

};

• Correctness of return in “then” branch:
– r	=	a holds so “r	=	a	or	r	=	b” holds,
– r	=	a holds so “r	≥	a”	holds, and

r	 =	a	 	 	 	 	
	 ≥	b	 	 	 	 	 since	a	≥	b

Know a	≥	b		and	 r	=	a

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: bigint, b, bigint): bigint => {
 if (a >= b) {
 return a;
 } else {
 return b;
 }

};

• Correctness of return in “else” branch:
– r	=	b holds so “r	=	a	or	r	=	b” holds,
– r	=	b holds so “r	≥	b”	holds, and
– r	≥	a	holds since we have r	>	a:

r	 =	b
	 	>	a	 	 	 	 	 since	a	<	b

Know a	<	b		and	 r	=	b

Sum of a List

const f = (a: bigint, b: bigint): bigint => {
 const L: List = cons(a, cons(b, nil));
 const s: number = sum(L); // = a + b
 …

};

• Can prove the claim in the comments by calculation

sum(L)	
	 	
	 	
	 	

func		sum(nil) :=		0
	 	sum(cons(x,	L))	 :=		x	+	sum(L)	 for	any	x	∈	ℤ	and	any	L	∈	List

Sum of a List

const f = (a: number, b: number): number => {
 const L: List = cons(a, cons(b, nil));
 const s: number = sum(L); // = a + b
 …

};

• Can prove the claim in the comments by calculation

sum(L)	 =	sum(cons(a,	cons(b,	nil)))	 	 since	L	=	…
	 	 =	a	+	sum(cons(b,	nil))	 	 	 def of sum
	 	 =	a	+	b	+	sum(nil)	 	 	 	 def of sum
	 	 =	a	+	b	 	 	 	 	 	 	 def of sum

func		sum(nil) :=		0
	 	sum(cons(x,	L))	 :=		x	+	sum(L)	 for	any	x	∈	ℤ	and	any	L	∈	List

Sum of a List

const f = (a: number, b: number): number => {
 const L: List = cons(a, cons(b, nil));
 const s: number = sum(L); // = a + b
 …

}

• Can prove the claim in the comments by calculation

sum(cons(a,	cons(b,	nil)))	=	…		=	a	+	b

• For which values of a and b does this hold?

holds	for	any	a	∈	ℤ	and	b	∈	ℤ

What We Have Proven

• We proved by calculation that

sum(cons(a,	cons(b,	nil)))	=	a	+	b

• This holds for any	a	∈	ℤ	and	b	∈	ℤ

• We have proven infinitely many facts
– sum(cons(3,	cons(5,	nil)))	=	8
– sum(cons(-5,	cons(2,	nil)))	=	-3
– …
– replacing all the ‘a’s and ‘b’s with those numbers

gives a calculation proving the “=” for those numbers

What We Have Proven

• We proved by calculation that

sum(cons(a,	cons(b,	nil)))	=	a	+	b	 	 	 	 for	any	a,	b	∈	ℤ

• We can use this fact for any a and b we choose
– our proof is a “recipe” that can be used for any a and b
– just as a function can be used with any argument values,

our proof can be used with any values for the “any” variables
(any values satisfying the specification)

– use “for any …” to make clear which things are variables

• This is called a “direct proof” of the “for any” claim

Binary Trees

	 	 type	Tree	:=		empty	|		node(x	:	ℤ,	L	:	Tree,	R	:	Tree)

• Inductive definition of binary trees of integers

node(1,	node(2,	empty,	empty),		node(3,	empty,	node(4,	empty,	empty))))

Binary Trees

1

2 3

4

Height of a Tree

	 type	Tree	:=		empty	|		node(x:	ℤ,	L:	Tree,	R:	Tree)

• Height of a tree: “maximum steps to get to a leaf”

1

2 3

4

1 1

2

1

2 3

0 1 1 2

Height of a Tree

	 type	Tree	:=		empty	|		node(x:	ℤ,	L:	Tree,	R:	Tree)

• Mathematical definition of height

 func		height(empty) :=		
	 	 	height(node(x,	L,	R))	 :=
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 						for	any	x	∈	ℤ	and	any	L,	R	∈	Tree1

2 3

4

2

1

0

0

Height of a Tree

	 type	Tree	:=		empty	|		node(x:	ℤ,	L:	Tree,	R:	Tree)

• Mathematical definition of height

 func		height(empty) :=		–1
	 	 	height(node(x,	L,	R))	 :=		1	+	max(height(L),	height(R))
	 	 	 	 	 	 	 	 for	any	x	∈	ℤ	and	any	L,	R	∈	Tree

1

2 3

4

2

1

0

0

Using Definitions in Calculations

func		height(empty) :=		–1
	 	 	height(node(x,	L,	R))	 :=		1	+	max(height(L),	height(R))
	 	 	 	 	 	 	 	 for	any	x	∈	ℤ	and	any	L,	R	∈	Tree

• Suppose “T	=	node(1,	empty,	node(2,	empty,	empty))”

• Prove that height(T)	=	1

height(T)	

Using Definitions in Calculations

func		height(empty) :=		–1
	 	 	height(node(x,	L,	R))	 :=		1	+	max(height(L),	height(R))
	 	 	 	 	 	 	 	 for	any	x	∈	ℤ	and	any	L,	R	∈	Tree

• Suppose “T	=	node(1,	empty,	node(2,	empty,	empty))”

• Prove that height(T)	=	1

height(T)	 =	height(node(1,	empty,	node(2,	empty,	empty))	 	 since T	=	…
	 	 =	1	+	max(height(empty),	height(node(2,	empty,	empty)))	 def of	height
	 	 =	1	+	max(-1,	height(node(2,	empty,	empty)))	 	 	 def of	height
	 	 =	1	+	max(-1,	1+	max(height(empty),	height(empty)))	 def of height
	 	 =	1	+	max(-1,	1+	max(-1,	-1))	 	 	 	 	 def of height	(x	2)
	 	 =	1	+	max(-1,	1+	-1)	 	 	 	 	 	 	 def of max
	 	 =	1	+	max(-1,	0)	 	 	 	 	 	 	 	
	 	 =	1	+	0	 	 	 	 	 	 	 	 	 def of max
	 	 =	1

Trees

• Trees are inductive types with a constructor that
has 2+ recursive arguments

• These come up all the time…
– no constructors with recursive arguments = “generalized enums”
– constructor with 1 recursive arguments = “generalized lists”
– constructor with 2+ recursive arguments = “generalized trees”

• Some prominent examples of trees:
– HTML: used to describe UI
– JSON: used to describe just about any data

