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Shipping Software

• Building shippable version is ~10x harder than demo
– demo version needs to work when used properly
– shipped version needs to work properly no matter what

• 1m users will try millions of cases that you didn’t
– needs to work properly on all cases, even ones you didn’t try

• Users are completely unforgiving about bugs
– no partial credit for effort

• How is this achieved in practice?



Standard Techniques for Correctness

Standard practice uses three techniques:

• Testing: try it on a well-chosen set of examples

• Tools: type checker, libraries, etc.

• Reasoning: think through your code on all inputs
– have another person do the same (“code review”)

Each removes ~2/3rd bugs but of different kinds
Combination removes >97% of bugs



Review: Software Development Process

Idea Generation

Given: a problem description (in English)

Type Checking Reasoning Testing

Debugging Beta Users

All Users

Beta users are understanding about failures,
but regular users are completely unforgiving!



Which Ones and How Much

• The first question to ask yourself:

How much of each is needed for my program?

• Correctness is easier for some programs vs others

• Personally, I break this into several cases…
– “levels” of difficulty



Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

? ?

? ?

? ?

? ?

? ?



Small Number of Inputs

• Set of possible inputs / configurations is small
– say 20 or fewer…

• Just check them all!
– this is the right answer

• This category does not require a programmer
– anyone can check the answer
– programming is hard, so skip it when you can



Small Number of Inputs

• Coding is the wrong tool for this job
– can happen in part of a larger application

• iPhone development lets you draw the UI:



Small Number of Inputs

a non-programmer
can check the answer



Small Number of Inputs

• Can happen as part of a larger application
– would then require an understanding of the context
– still a case where AI could be used (checked by a programmer)

• Happens more often than you might think
– individual function can have a small number of inputs

e.g., two boolean inputs (only 4 configurations)

– quite common with UI
e.g., when I click the button, it should say “hi”

• Be on the lookout for these cases
– save yourself work by spotting them



Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

? ?

? ?

? ?

? ?

? ?



Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

straight from spec heuristics

no mutation “

local variable mutation “

array mutation “

heap state mutation “



Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

straight from spec heuristics type checking

no mutation “ libraries

local variable mutation “ “

array mutation “ “

heap state mutation “ “



Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

straight from spec heuristics type checking code reviews

no mutation “ libraries calculation
induction

local variable mutation “ “ Floyd logic

array mutation “ “ for-any facts

heap state mutation “ “ rep invariants



Reminders

• We will set an extremely high bar for correctness 
– “programmers overestimate the importance of efficiency

                and underestimate the difficulty of correctness.”

• Now is the time to practice proper technique
– much harder to learn technique on harder problems

• This topic: Testing and Tools
– you have important responsibilities here

• Next topic: Reasoning (pt. 1)
– the most important part 

everything else can (and will) be automated

– see the other two class slogans!



Specifications



Specifications

• Correctness requires a description of the correct answer
– true at any level of correctness

• Description must be precise
– can’t have disagreement about what is correct

• Informal descriptions (English) are usually imprecise
– necessary to “formalize” the English

turn the English into a precise mathematical definition

– professionals are extremely good at this
usually just give English definitions
important skill to practice

– we will start out completely formal to make it easier



Kinds of Specifications

• Imperative specification says how to calculate the answer
– lays out the exact steps to perform to get the answer

• Declarative specification says what the answer looks like
– does not say how to calculate it
– future: prove our calculation meets the spec

• Can implement a different imperative specification
– future: prove ours is equivalent to the original specification



Example: Imperative Specification 

• Absolute value |x|	=	x if x	≥	0 and –x otherwise
– definition is an “if” statement

 const abs = (x: bigint): bigint => {
   if (x >= 0n) {
     return x;
   } else {
     return –x;
   }
 } just translating math to TypeScript

straight from the spec



Example: Declarative Specification

• Square root of x is number y such that y2	=	x
– not all positive integers have integer square roots,

so… let’s round up
– (y	–	1)2	≤	x	≤	y2

smallest integer y such that x	≤	y2

 const sqrt = (x: bigint): bigint => {
   
      ??

 } we are left to figure out how to do this…

not straight from the spec



Example: Declarative Specification

• Absolute value |x| is an integer y such that
– y	≥	x	
– y	≥	–x
– y	=	x	or y	=	–x

 const abs = (x: bigint): bigint => {
   if (x >= 0) {
     return x;
   } else {
     return –x;
   }
 }

requires some thinking to make sure this code
returns a number with the properties above

correctness is inherently harder with a declarative spec

not straight from the spec



Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

straight from spec ? ? ?



Straight From the Spec

• Instructions say exactly how to calculate answer
– given an imperative specification
– we are just translating math into code

• Still easy to make mistakes!
– too many inputs to test them all
– need to additional ways of checking for bugs

• Still important to get it right!



Non-programming Example

• Important to calculate grades correctly!

• The syllabus says the formula
– ask someone else to double-check (“code review”)
– spot check some of them



Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

straight from spec heuristics type checking code reviews



Correctness when Straight From the Spec

Correctness requires these elements:

• Code review
– second set of eyes

• Type checker
– third set of eyes (so to speak)

(tends to find different mistakes than human reviewers)

• Good set of tests
– can’t test every case… need to pick the the right ones

(more on this next lecture…)



Type Checkers

• The main part of “Tools” is the type checker
– libraries are the other important part

• Type Checkers are very useful for finding bugs
– another set of “eyes” helping us find them
– you have probably learned this already



Type Checkers

• TypeScript and Java have different type systems
– they can catch different bugs for us

TypeScript ensures references are not null (Java does not)
more examples coming soon…

• Critical to understand what the tools will miss
– can ignore issues the tools would catch
– must carefully think about issues the tools would miss



Important Java Examples

• In Java, your responsibility to catch e.g.

1. Using “==” between strings
 Fine in principle, but not what you want
 Especially bad bug because it is likely to work in tests!

2. Wrong order of arguments
 Famous example:  memset(int[] A, int n, int v)
 You call memset(A, 0, 100) instead of memset(A, 100, 0)

3. Defining “equal(Object o)” instead of “equals”
 Perfectly fine, but doesn’t override equals method
 (@Override annotations added to Java to catch this!)

experienced programmers are
always on the look out for these

not all of these apply in TypeScript!





How-To For Straight From the Spec

• We will start with completely formal specs

• Translate math into our programming language
– TypeScript here, but could also be Java

• Rest of this lecture:
– define math for data and code
– describe how to translate those into TypeScript

try to make the translations as straightforward as possible (fewer mistakes)

– mention new TypeScript features when related



Math Notation



Basic Data Types in Math

• In math, the basic data types are “sets”
– sets are collections of objects called elements
– write x ∈	S to say that “x” is an element of set “S”,

and x ∉	S to say that it is not.

• Examples:
  x ∈	ℤ    x is an integer
  x ∈	ℕ    x is a non-negative integer (natural)
  x ∈	ℝ    x is a real number
  x ∈	𝔹    x is T or F (boolean)
  x ∈	𝕊	    x is a character
  x ∈	𝕊*    x is a string

non-standard names



Basic Data Types in TypeScript

Condition Math TypeScript Up to Us

integer x	∈	ℤ bigint

natural x	∈	ℕ bigint non-negative

real x	∈	ℝ number

boolean x	∈	𝔹 boolean

character x	∈	𝕊 string length 1

string x	∈	𝕊* string

we will often write
x : ℤ  instead of  x ∈	ℤ

– only subtraction on non-negative can produce negative



Ways to Create New Types In Math

• Union Types 	 𝕊*		∪		ℕ
– contains every object in either (or both) of those sets
– e.g., all strings and natural numbers

• If x	∈	ℕ	∪	𝕊*, then x could be a natural or string

• Two sets can contain common elements
– in this case, the sets are disjoint



Ways to Create New Types in TypeScript

• Union Types  string | bigint
– can be either one of these

• How do we work with this code?

const x: string | bigint = …;

// can I call isPrime(x)?

• We can check the type of x using “typeof”
– TypeScript understands these expressions
– will “narrow” the type of x to reflect that information



Type Narrowing With “If” Statements

• Union Types  string | bigint
– can be either one of these

• How do we work with this code?

const x: string | bigint = …;

if (typeof x === “bigint”) {
  console.log(isPrime(x))   // okay! x is a bigint
} else {
  …                         // x is a string
}



Type Narrowing vs Casting

const x: string | bigint = …;

if (typeof x === “bigint”) {
  console.log(isPrime(x))   // okay! x is a bigint
} else {
  …                         // x is a string
}

• Note that this does not require a type cast
– TypeScript knows x is a bigint inside the “if” (narrowing)

• 331: there are no type casts (won’t even show syntax)
– unlike Java, TypeScript casts are unchecked at runtime
– seem designed to create extremely painful debugging



Type Narrowing Gotcha

const f = (x: bigint): string | bigint => …;

if (typeof f(x) === “bigint”) {
  console.log(isPrime(f(x)))   // is this okay?
}

• No! TypeScript will (properly) reject this
– no guarantee that f(x) returns the same value both times!



Type Narrowing of Function Calls

const f = (x: bigint): string | bigint => …;

const y = f(x);
if (typeof y === “bigint”) {
  console.log(isPrime(y))      // this works now
}

• TypeScript can see that the two values are the same

• Functions that return different values for the same 
inputs are confusing!
– maybe better to avoid that



Compound Types In Math

• Compound types combine multiple data types
– multiple ways build them

• Record Types  {x	:	ℕ,		y	:	ℕ}
– record with fields “x” and “y” each containing a number
– e.g., {x:	3,	y:	5}

• Note that {x:	3,	y:	5}	=	{y:	5,	x:	3}
– field names matter, not order
– (also, “=“ means same values)



Record Types in TypeScript

• Record Types  {x: bigint, y: bigint}
– anything with at least fields “x” and “y”

• Retrieve a part by name:

const t: {x: bigint, y: bigint} = … ;
console.log(t.x);



Optional Fields in TypeScript

• Records can have optional fields

type T = {x: bigint, y?: bigint};

const t: T = {x: 1n};

– type of “ t.y ” is “ bigint | undefined ”

• Functions can have optional arguments

const f = (a: bigint, b?: bigint): bigint => {
  console.log(b);

};

– type of “ b ” is “ bigint | undefined ”



Compound Types In Math

• Record Types  {x	:	ℕ,		y	:	ℕ}
– record with fields “x” and “y” each containing a number
– e.g., {x:	3,	y:	5}

• Tuple Types   ℕ  ⨉  ℕ
– pair of two natural numbers, e.g., (5,	7)
– can do tuples of 3, 4, or more elements also

• Mostly equivalent alternatives
– both let us put parts together into a larger object
– record distinguishes parts by name
– tuple distinguishes parts by order



Tuple Types in TypeScript

• Tuple Types  [bigint, bigint]

• Must assign names to the parts to refer to them

• How would we do this in math?



Retrieving Part of a Tuple

• To refer to the parts, we must give them names

• Tuple Types   ℕ  ⨉  ℕ

Let	(a,	b)	:=	t.    Suppose we know that t	=	(5,	7)

       Then, we have a	=	5 and b	=	7

• Tuple Types  [bigint, bigint]

const t: [bigint, bigint] = …;
const [a, b] = t;
console.log(a);  // first part of t

“:=” means a definition



Readonly Values

• TypeScript can ensure values aren’t modified
– extremely useful! (mutation makes everything harder)

• Tuple types should always be readonly

type IntPair = readonly [bigint, bigint];

• Individual fields of records should be marked readonly

type IntPair = {readonly x: bigint,
                readonly y: bigint};



Simple Functions in Math

• Simplest function definitions are single expressions

• Will write them in math like this:

func	double(n	:	ℕ)	:=	2n

func	dist(p	:	{x:	ℝ,	y:	ℝ})	:=	(p.x2	+	p.y2)1/2

– any normal math allowed in the expression



Simple Functions in Math

• Can define short-hand for types in math also

type	Point	:=	{x:	ℝ,	y:	ℝ}

func	dist(p	:	Point)	:=	(p.x2	+	p.y2)1/2

• Can put the argument type on the right instead

func	dist(p)	:=	(p.x2	+	p.y2)1/2    for any p : Point

– needs to be described somewhere (we’re not too picky)
– will need this in some cases coming shortly…



Complex Functions in Math

• Most interesting functions are not simple expressions
– need to use different expressions in different cases

• Can use side-conditions to split into cases

							func	 abs(x	:	ℝ)	:=	x	 	 	 if	x	≥	0
	 	 abs(x	:	ℝ)	:=	–x	 	 	 if	x	<	0

– conditions must be exclusive and exhaustive
we do not want to require on order to determine which applies

– there is a better way to do this in many cases…



Pattern Matching

• Can also define functions by “pattern matching”

						func	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2	 	 for	any	n	:	ℕ

– first case matches only 0
– second case matches numbers 1 more than some n	:	ℕ	…

double(6) = double(5+1) so it matches with n = 5
since n	≥ 0, we have n+1 ≥	1, so it matches 1, 2, 3, …

– pattern “n+2” would match 2,	3,	4,	…

• Simplifies the math in multiple ways…



Pattern Matching on Natural Numbers

• Pattern matching definition

						func	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2	 	 for	any	n	:	ℕ

 is simpler than using side conditions

	func	 double(n)	 :=	0		 	 	 	 if	n	=	0	 	 for	any	n	:	ℕ
	 	 double(n)	 :=	double(n-1)	+	2	 if	n	>	0	 	 for	any	n	:	ℕ

– e.g., need to explain why double(n-1) is legal
easy in this case, but it gets harder

– (also makes the reasoning easier, as we will see later…)

• We will prefer pattern matching whenever possible



Pattern Matching on Booleans

• Booleans have only two legal values: T and F

• Can pattern match just by listing the values:

							func	 not(T)	:=	F
	 	 not(F)	:=	T

– negates a boolean value
– no simpler way to define this function!



Pattern Matching on Records

• Can pattern match on individual fields of a record

							type	 Steps	:=	{n	:	ℕ,	fwd	:	𝔹}

							func	 change({n:	n,	fwd:	T})	:=	n	 	 	 for	any	n	:	ℕ
	 	 change({n:	n,	fwd:	F})	:=	–n		 	 for	any	n	:	ℕ

– clear that the rules are exclusive and exhaustive

• Can match on multiple parameters
– e.g., change({n:	m+5,	fwd:	T})	:=	2m				for	any	m	:	ℕ
– just make sure the rules are exclusive and exhaustive



Pattern Matching in TypeScript

• TypeScript does not provide pattern matching
– some other languages do! (see 341)

• We must translate into “if”s on our own

type Steps = {n: number, fwd: boolean};

const change = (s: Steps) => {
  if (s.fwd) {
    return s.n;
  } else {
    return –s.n;
  }

};

still straight from the spec
but easy to make mistakes



Pattern Matching in TypeScript

func	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2	 	 for	any	n	:	ℕ

• Also need to be careful with natural numbers

// m is non-negative
const double = (m: bigint) => {
  if (m === 0n) {
    return 0n;
  } else {
    return double(m – 1n) + 2n;
  }

};

– pattern matching uses “n+1” but the code uses “m” (or “n”)
sadly, TypeScript will not let “n+1” be the argument value

spec says double(m)
but code says double(m – 1)

straight from 
the spec



Pattern Matching in TypeScript

func	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2	 	 for	any	n	:	ℕ

• This implementation returns the same thing:

// m is non-negative
const double = (m: bigint) => {
  return 2n * m;
};

– but that’s not what the spec says!
spec is imperative but this is a different implementation

– requires reasoning tools to check that this is correct
(will come in HW3+…)

not straight 
from the spec



Correctness Levels

Description Testing Tools Reasoning

small # of inputs exhaustive

straight from spec heuristics type checking code reviews



Testing



What Can We Learn From Testing?

“Program testing can be used to show the presence of bugs, 
but never to show their absence!”

Edsgar Dijkstra
Notes on Structured Programming, 1970

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

Donald Knuth, 1977



Unit vs Integration Tests

• A unit test checks one component
– ideally, without testing anything else (not always possible)

• You will be expected to write unit tests in industry

• There are also integration tests and end-to-end tests
– someone will write them, but maybe not you

• We will focus on unit testing in this course



“Manual” vs Programmatic Tests

• Usually possible to run the code by hand (“manually”)
– open it in node and execute it
– open it in the browser and look at it (UI)

• No downside… unless the code changes
– then, you need to do the tests again

• For some code (UI especially), manual is still easier
– if written tests are 3x as hard to create,

then you’re better off unless you change it 3+ times
– for UI, written tests aren’t perfect anyway

need to see it in the browser to be sure that it looks right



Writing a Test

1. Choose an input / configuration
– description of the inputs / configuration is the “test case”

2.  Think through what the answer should be
– if you run the code to get the answer, you are not testing

3. Write code that
– calls the function that input
– compares the actual answer to the expected one
– useful libraries that do this

we will use “mocha” in JS / TS



Key Idea

• Key question is what cases to test
– small # inputs: we can test all of them
– otherwise, we cannot

• Set of inputs can be infinite, but the code is finite
– key idea: use knowledge of the code structure to test it



Key Idea

• Key question is what cases to test
– small # inputs: we can test all of them
– otherwise, we cannot

• Split the allowed inputs into subdomains
– for inputs in one subdomain, code “does the same thing”

• Hope: code is entirely right or wrong for subdomain
– one example in the subdomain will tell us if there is a bug
– (note: this is not always true… see sec02 and HW2)

• Plan: Look at the code. See when it “does the same thing”



Need to Look At the Code

// Returns true iff n is a prime number
 const isPrime = (n: bigint): boolean => { … }

• How about if we test 2, 3, 4, 7, 12, 101?
– seems okay?



Need to Look At the Code

// Returns true iff n is a prime number
 const isPrime = (n: bigint): boolean => {
     if (n < 100n) {
       return PRIME_CACHE[n];  // precomputed answers
     } else {
       for (let k = 2n; k*k <= n; k++) {
         if (n % k === 0n)
           return false;
       }
       return true;
     }

   };



Need to Look At the Code

// Returns true iff n is a prime number
 const isPrime = (n: bigint): boolean => {
     if (n < 100n) {
       return PRIME_CACHE[n];
     } else {
       …

     }
   }

• Cases 2 … 100 are just table lookups!



Primary Heuristic: Clear-Box Testing

• We need to look at the code to know what to test
– this will be our primary heuristic

• In this class, I want a clear rule for how many tests
– want homework and tests to have clear right/wrong answers

• Outside of class, these tests are also good
– but other programmers may not use the same rules



Testing Straight-Line Code

Straight-line Code looks like

    return 2 * (n - 1n) + 1n;

Or, more generally, like this

    const m = n – 1n;
    return 2n * m + 1n;

• Any number of constant values allowed
– often makes the code easier to read, but no different

• Inputs where it executes the same straight-line code
are “doing the same thing”



Testing Straight-Line Code

 Rule: same straight-line code is one subdomain

Straight-line Code looks like

    return 2n * (n - 1n) + 1n;

Or, more generally, like this

    const m = n – 1n;
    return 2n * m + 1n;



Testing Subdomains

 Rule: at least two test cases per subdomain
      (assuming subdomain contains at least two inputs)

• Real bugs will be missed if only one test case
– common bug: copy-and-paste a stub and forget to change it!
– will happen to you eventually if you don’t test two cases

• Still doesn’t guarantee the code is right! (see HW2)

• More is obviously also okay
– not a contest to write the fewest tests



Testing Function Calls

In general, function calls are still straight-line code

    const m = n – 1n;
    return Math.sin(2n * m + 1n);

• All inputs are still are “the same”
– two cases is still enough
– not your job to test the other function!

test each function on its own assuming the others work
exception: recursive calls (more later)



Testing Conditionals

Conditionals look like this

    if (n > 0n) {
      return 2n * (n – 1n) + 1n;
    } else {
      return 0n;
    }

Two branches (“then” and “else”)
– in this case, both branches are straight-line code
– note: the ternary operator creates branches



Testing Conditionals

 Rule: branches are in separate subdomains

• Would be negligent not to test both branches

• If both are straight-line code, then 4 tests

• With if/else if/else, we’d need 6 tests
– 3 branches x 2 per straight-line block = 6 cases



Other Heuristics

Some other heuristics are also useful

• Boundary Cases: if 10 and 11 are separated,
then make sure you test 10 and 11
– easy to have “off by one” bugs
– happens if you use “< n” instead of “<= n”

behavior changes between n-1 and n instead
(see John Carmack’s tweet!)

• Often doesn’t require any more tests
– can be one of two cases for straight-line code



Testing Conditionals

Conditionals look like this (with n an integer)

    if (n > 0n) {
      return 2n * (n – 1n) + 1n;
    } else {
      return 0n;
    }

• Boundary cases are 0 and 1
– cases for “then” block could be 1 and 10 (say)
– cases for “else” block could be 0 and -1 (say)



Testing Subdomains

Another rule for subdomains with obvious boundaries

 Rule: test each boundary case and
       at least one non-boundary case

• If there are no boundaries, test two non-boundary

• If there is one boundary, then test it and one non-boundary

• If there are two boundaries, then test both and one non-boundary
– e.g., if branch is executed for x between 3 and 10
– 3 tests are now necessary (e.g., 3, 6, and 10)



Testing Recursion

Recursive calls are more complicated

  const f = (n: bigint): bigint => {
    if (n >= 2n) {
      return 2n * f(n / 2n) + 1n;
    } else {
      return 0n;
    }
  }

• Heuristics thus far would allow 0, 1, 2, 3
– only tests 0 or 1 recursive calls
– not enough! (see sec02)



Testing Recursion

Clear-box Testing for recursive calls:

 Rule: inputs that cause 0, 1, and 2+ recursive calls
       are in separate subdomains

• Call this the “0–1–many” heuristic

• Split into 3 subdomains, then apply other rules
– if subdomains run the same straight-line code, then 6 tests
– if “0 recursive calls” has two branches, then 8 tests
– if a subdomain has only one input, then just one test

e.g., “0” is in its own subdomain, that’s just one test



Testing Recursion

Clear-box Testing for recursive calls:

 Rule: inputs that cause 0, 1, and 2+ recursive calls
       are in separate subdomains

• Call this the “0–1–many” heuristic

• Note the savings of using a library (part of “tools”)
– still one subdomain if you call someone else’s function
– but usually, 5-6 test cases at minimum if you call your own



Summary of Heuristics

• Split into subdomains where code is different
– branches of conditionals
– 0, 1, many recursive calls

• At least two tests per subdomain
(unless subdomain is only 1 input)

– include all boundaries and a non-boundary

• Not a contest to write the fewest tests!



Summary of Heuristics

• Continue splitting until no more splits needed
– e.g., two inputs that both make 0 recursive calls BUT

are in separate branches… are in separate subdomains

• For “2+ recursive calls”, look at first two calls
– different paths are split into separate subdomains
– e.g., same branch on first call but different on second

• Complete summary in the notes on website



Example 1

// n must be a non-negative integer
 const f = (n: bigint): number => {
    if (n === 0n) {
      return 0;
    } else {
      return Math.sin(Math.PI*(Number(n) + 0.5));
    }
  }

How many tests? Which ones?
– 0 (top branch) and 1, 5 (bottom branch)



Example 2

// n must be a non-negative integer
 const f = (n: bigint): bigint => {
    if (n < 3n) {
      return 0n;
    } else if (n < 10n) {
      return (n – 3n) / 10n;
    } else {
      return 1n;
    }
  }

How many tests? Which ones?
– 0, 1, 2 (top) and 3, 6, 9 (middle) and 10, 12 (bottom)
– note that 0 is also a boundary case



Example 3

// n must be a positive integer
 const f = (n: bigint): number => {
    if (n === 1n) {
      return 0;
    } else {
      return 1 + f(1n + (n – 2n) / 2n);
    }
  }

How many tests? Which ones?
– 1 (0 recursive calls)
– 2, 3 (1 recursive call)
– 4, 10 (many recursive calls)



Example 4

// n must be an integer between 1 and 10
 const f = (n: bigint): bigint => {
    if (n === 1n) {
      return 0n;
    } else {
      return 1n + 2n * f(n – 1n);
    }
  }

How many tests? Which ones?
– small # of inputs, so… all of them



What Else?

• We only have rules for:
– straight-line code
– conditionals (“if” statements)
– recursion

• What about everything else?

• Without mutation, this is all we need
– loops require mutation



Other Heuristics

Not required for 331 but useful in practice:

• Make sure every argument value is changed

• Look at special values
– null, undefined, NaN, empty array, etc. often have bugs

• Look at the specification for branches
– maybe the code doesn’t split inputs where it should!
– e.g., spec splits into “if	x	≥	0” but code is “if (x > 0)”



Typical Numbers of Tests

• Typical function should have ~10-30 tests

• Should be embarrassed if you have <10 tests
– better have a good explanation in terms of subdomains

• More than 30 starts to feel too time consuming
– not bad and may be necessary
– but we will adjust our rules to try to avoid this



Escape Hatches

• If the previous rules give >20 tests…

1. Look only at the outermost recursive call
(rather than the outmost two calls)

• If there are still >20 tests…

2. Pick only one example per subdomain (shudders)

• If there are still >20 tests…

3. Maybe rewrite your function to be simpler?


