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Administrivia

• HW6 released later today, due Wednesday (5/8) at 11pm
• Can resubmit as many times as you’d like until the deadline. 

– Use the autograder as a tool if you’re not sure if your 
code/tests have bugs



Proving Correctness of ADT

To prove the correctness of an ADT Implementation, you must show 
the correctness of the constructor and each method:
1) Constructor

- must create a concrete state that satisfies the RI
- must create the abstract state required by the spec

2) Methods
- check value returned is the one stated by the spec
- may need to use both RI and AF



Proving Correctness of ADT (Example)

interface NumberQueue {
// @returns len(obj) 
size: () => bigint;

}
class ListQueue implements NumberQueue { 

// AF: obj = this.items 
readonly items: List; 
size = (): bigint => { return len(this.items); }; 

}

- In order to prove the correctness of size(), we need to use the 
AF which gives:

len(this.items) = len(obj) By AF



Hoare Triples – Review
• A Hoare Triple has 2 assertions and some code

{{ P }}
   S
{{ Q }}

– P is a precondition, Q is the postcondition 
– S is the code

• Triple is “valid” if the code is correct:
– S takes any state satisfying P into a state satisfying Q

• Does not matter what the code does if P does not hold 
initially



Stronger vs Weaker – Review
•  

• Different from strength in specifications:
– A stronger spec:

• Stronger postcondition: guarantees more specific output
• Weaker precondition: handles more allowable inputs

   compared to a weaker one



Forward Reasoning – Review
• Forwards reasoning fills in the postcondition

– Gives strongest postcondition making the triple valid
• Apply forward reasoning to fill in R

– Check second triple by proving that R implies Q



Backward Reasoning – Review
• Backwards reasoning fills in preconditions

– Just use substitution!
– Gives weakest precondition making the triple valid

• Apply backwards reasoning to fill in R

– Check first triple by proving that P implies R

• Good example problems in section worksheet!



Conditionals – Review
• Reason through “then” and “else” branches independently and 

combine last assertion of both branches with an “or” at the end
• Prove that each implies post condition by cases



Loop Invariant – Review

• Loop invariant must be true every time at the top of the loop 
– The first time (before any iterations) and for the beginning of 

each iteration
• Also true every time at the bottom of the loop

– Meaning it’s true immediately after the loop exits
• During the body of the loop (during S), it isn’t true

• Must use “Inv” notation to indicate that it’s not a standard 
assertion

true!{{Inv: I}}
while (cond) {
    S
}

true!
true!

true!



Well-Known Facts About Lists
•  



Question 4
 

(a) Invariant is true 
at top of loop the 
first time

(c) Invariant is 
preserved by loop 
body

(b) Postcondition 
holds when we exit



Question 1a



Question 1b



Question 2a



Question 2b

x - 6 < y



Question 3b – “then” branch



Question 3b – “else” branch



Question 5a

The Invariant should be “L = countdown(i)”



Question 5b

The Invariant should be “L = countdown(i)”



(a) Give the invariant for the loop, based on the ”bottom-up” 
template for lists

(b) How do we initialize the variables so the invariant is true 
initially?

Question 6

 

 

 

 

 

 
= concat(L, nil)     Since S = nil   



(c) When do we exit the loop? What should the condition of the
  while be?

(d) Generally, the template says we move down the list with L = L.tl.
      swap processes 2 elements of the list at at time, so our loop
      should do the same. Write the loop body that does this and
      maintains the invariant:

Question 6

 

T = cons(R.hd, cons(R.tl.hd, T));
S = cons(R.tl.hd, cons(R.hd, S));
R = R.tl.tl;



Question 6
T = cons(R.hd, cons(R.tl.hd, T));
S = cons(R.tl.hd, cons(R.hd, S));
R = R.tl.tl;

We still need need to prove this code maintains the invariant: 

 
 

 


