CSE 331
Software Design & Implementation

Spring 2024
Section 5 — Functional Programming |l

Administrivia

 HWS5 released later today, due Wednesday (5/1) at 11pm
— Please! start early and be prepared for a challenge!
— Give yourself time to come to OH and ask questions on Ed

— Working on the same issue for hours when you’re stuck won'’t
help, ask for help!

« Can resubmit as many times as you’d like until the deadline.

— Use the autograder as a tool if you're not sure if your
code/tests have bugs

Abstraction Barrier — Review

Abstraction Barrier

Function i Client

Implementation N > Function Call

Function Specification

» Specifications acts as the “barrier” between each side
— improves understandability, changeability, and modularity

» Clients can only depend on the spec

« Implementer can write any code that satisfies the spec

Specifications for ADTs — Review

e New Terminology for specifying ADTs:
o Concrete State / Representation (Code)
m Actual fields of the record and the data stored
m Ex:{ list: List, last: bigint | undefined }
o Abstract State / Representation (Math)
m How clients should understand the object
m Ex: List(nil or cons)

Specifications for ADTs — Review

/**
* A list of integers that can retrieve the last
* element in 0(1) time.

*/

export interface FastList {

e

* Returns the object as a regular list

* @returns obj «1-5____~§§-§~
*/ obj is the abstract state

tolList: () => List<bigint>

 Talk about functions in terms of the abstract state

» Hide the representation details (i.e. real fields) from the client

Documenting ADTs — Review

Abstract Function (AF) — defines what abstract state the field
values represent

— Maps field values — the object they represent
— Output is math, this is a mathematical function

Representation Invariants (RI) — facts about the field values that
must always be true

— Constructor must always make sure Rl is true at runtime
— Can assume Rl is true when reasoning about methods
— AF only needs to make sense when Rl holds

— Must ensure that RI always holds

Documenting ADTs — Review

class FastLastList implements FastList {
// RI: this.last = last(this.list);
// AF: obj = this.list;

// @ returns last(obj)
getLast = (): bigint | undefined => {
return this.last;
}s
}

Prove correctness of last(obj) = this.last using both

Last(obj) = last(this. list) by AF
= this.last by RI

Defining Interfaces

interface FastList {

Typescript getLast: () => bigint | undefined;
tolList: () => List<bigint>
}
I
I
Java interface FastList {

int getlast () throws EmptylList;
List<Integer> tolList();
}

Readonly — Typescript

* The prefix readonly is used to make a property read-only
— Value cannot be changed
— Protects variables from unwanted mutations
— Should be our default

EX:
class FastLastListImpl implements FastList {
readonly last: bigint | undefined;
readonly list: List<bigint>;

Abstract Data Class — Example

class FastLastListImpl implements FastlList {
readonly last: bigint | undefined;
readonly list: List<bigint>;

constructor(list: List<bigint>) {
this.last = last(list);
this.list = list;

}

getlLast = () => { return this.last; }
toList = () => { return this.list; }

Can create new record using “new’:

interface FastList { new FaStLaStLiStImpl(liSt);

}

getlLast: () => bigint | undefined;
toList: () => List<bigint>

Question 1 & 2 — Coding

Run npm run startin sec-highlight to check it out!

iInput the points:

100 100
100 300
300 100
300 300

Questions 1 & 2 — Recap

* From concrete implementation — ADT, writing specs shouldn’t be
too hard

— the specs already exist

— just need to adjust what objects they’re operating on:
parameters — ‘obj’

— and add appropriate AF and Rl

* Only did 1 in this example, but we're able to have multiple
classes implement the same interface, all with the same spec

— Implementation can be switched out as needed, but expected
inputs and behavior (spec) will be consistent

Question 4

Prove by structural induction that, for any left-leaning tree
T, we have: | ,e(1) < oheight(T)+1 _ 4

Hints:

1) Define the tree in your IH according to the definition of tree
‘node(x, S, T) so you can access the left and right trees

2) Remember the exponent rule: x¥ x x = xY*1

func size(empty) =0
size(node(x,S,T)) := 1+ size(S) + size(T)
func height(empty) = -1

height(node(z,S,7T")) := 1+ height(S) forany x:Z and S,T : Tree

Question 3 — Preface

sep takes a list L and a value x, and returns two lists, A
containing all values < x and B containing all values > x.

func sep(nil, x) = (nil, nil)
sep(cons(y, L),x) := (cons(y, A), B) ify<uz
sep(cons(y, L),z) := (A,cons(y,B)) if v <y
where (A, B) := sep(L, x)

Note: in the recursive case, you:

 make a call to sep(L, x)

» take the return value of that call (4, B)

 cons(yonto A or B and returns (4, cons(y,B)) or (cons(y,A), B)

« Making an additional step to make our recursive result cleaner
and avoid multiple recursive calls

Question 3

Prove by induction on L that len(4) + len(B) = len(L),
where (4,B) = sep(L,x)

func len(nil) =0
len(cons(a, L)) := 1-+len(L) foranya: A and L : List

func sep(nil, x) = (nil, nil)
sep(cons(y, L),x) := (cons(y,A), B) ify <ux
sep(cons(y, L),z) := (A,cons(y,B)) ifr<y

where (A, B) :=sep(L, z)

