
CSE 331
Software Design & Implementation

Spring 2024
Section 5 – Functional Programming III

Administrivia

• HW5 released later today, due Wednesday (5/1) at 11pm
– Please! start early and be prepared for a challenge!
– Give yourself time to come to OH and ask questions on Ed
– Working on the same issue for hours when you’re stuck won’t

help, ask for help!

• Can resubmit as many times as you’d like until the deadline.
– Use the autograder as a tool if you’re not sure if your

code/tests have bugs

Abstraction Barrier – Review

• Specifications acts as the “barrier” between each side
– improves understandability, changeability, and modularity

• Clients can only depend on the spec

• Implementer can write any code that satisfies the spec

Specifications for ADTs – Review
● New Terminology for specifying ADTs:

○ Concrete State / Representation (Code)
■ Actual fields of the record and the data stored
■ Ex: { list: List, last: bigint | undefined }

○ Abstract State / Representation (Math)
■ How clients should understand the object
■ Ex: List(nil or cons)

Specifications for ADTs – Review

• Talk about functions in terms of the abstract state

• Hide the representation details (i.e. real fields) from the client

obj is the abstract state

/**
* A list of integers that can retrieve the last
* element in O(1) time.
*/
export interface FastList {
…
/**
* Returns the object as a regular list
* @returns obj
*/
toList: () => List<bigint>

Documenting ADTs – Review
Abstract Function (AF) – defines what abstract state the field
values represent

– Maps field values → the object they represent
– Output is math, this is a mathematical function

Representation Invariants (RI) – facts about the field values that
must always be true

– Constructor must always make sure RI is true at runtime
– Can assume RI is true when reasoning about methods
– AF only needs to make sense when RI holds
– Must ensure that RI always holds

Documenting ADTs – Review

class FastLastList implements FastList {
 // RI: this.last = last(this.list);
 // AF: obj = this.list;

 // @ returns last(obj)
 getLast = (): bigint | undefined => {
 return this.last;
 };
}

Defining Interfaces

Typescript

Java

interface FastList {
 getLast: () => bigint | undefined;
 toList: () => List<bigint>
}

Readonly – Typescript

• The prefix readonly is used to make a property read-only
– Value cannot be changed
– Protects variables from unwanted mutations
– Should be our default

Ex:
class FastLastListImpl implements FastList {

readonly last: bigint | undefined;

readonly list: List<bigint>;

}

Abstract Data Class – Example
class FastLastListImpl implements FastList {

readonly last: bigint | undefined;
readonly list: List<bigint>;

constructor(list: List<bigint>) {
this.last = last(list);
this.list = list;

}

getLast = () => { return this.last; }
toList = () => { return this.list; }

}

Can create new record using “new”:

new FastLastListImpl(list);interface FastList {
 getLast: () => bigint | undefined;
 toList: () => List<bigint>
}

Question 1 & 2 – Coding
Run npm run start in sec-highlight to check it out!

input the points:
100 100
100 300
300 100
300 300

Questions 1 & 2 – Recap
• From concrete implementation → ADT, writing specs shouldn’t be

too hard
– the specs already exist
– just need to adjust what objects they’re operating on:

parameters → ‘obj’
– and add appropriate AF and RI

• Only did 1 in this example, but we’re able to have multiple
classes implement the same interface, all with the same spec
– Implementation can be switched out as needed, but expected

inputs and behavior (spec) will be consistent

Question 4

Question 3 – Preface

Question 3

