
CSE 331: Software Design & Implementation

Homework 1 (due Wednesday, April 3rd at 11:00 PM)

In this assignment, you will implement a simple web application and gain experience with TypeScript and HTML.
Once you are done, follow the instructions on page 9 to submit the coding and written portions in GradeScope.

The following completed files should be directly submitted for the “HW1 Coding” assignment:
fib.ts prime.ts index.tsx

as well as index.css if you completed extra credit. For the “HW1 Written” assignment, submit your written
answers for problems 4(c) and 7(b).

To get started, check out the starter code using the command:

git clone https://gitlab.cs.washington.edu/cse331-24sp/cse331-24sp-materials/hw-fib.git

Install the required libraries, run the command npm install --no-audit in the hw-fib directory.

The initial application does nothing at all. (You will add all of its functionality below.) However, the provided
source code includes the function fib defined in fib.ts with the following shape:

export const fib = (n: bigint): bigint => { .. };

This function takes a non-negative integer n as input and returns the n-th Fibonacci number, denoted fn.
In case you have not seen Fibonacci numbers before, they are defined as follows. The first two Fibonacci

numbers are defined to be f0 = 0 and f1 = 1. For n ≥ 2, the n-th Fibonacci number is defined recursively as
fn = fn−2 + fn−1. (Note that this formula only works for n ≥ 2.) The fib function provided calculates the
n-th Fibonacci number using exactly these formulas. Have a look at the code and make sure it all makes sense.

The provided code also includes a check to make sure that the user passed in a non-negative number.
This is not strictly necessary (since the function specificication says that n is non-negative), but it is a good
idea to include it to help catch any bugs in other parts of the code. Writing such checks is called “defensive
programming”.

The starter code also includes a file fib_test.ts with tests for the the fib function. We will learn more
about testing in future assignments, but for now, note that each call to assert.deepStrictEquals passes
in two numbers: the actual return value of fib(n), for some n, and the expected answer. The function
assert.deepStrictEquals checks that the two numbers are the same. If not, it prints an error message.

Confirm that the fib function provided passes the tests provided by running the command npm run test.
You will see that the tests for some other functions (e.g., fastFib) are failing because those functions are not
yet implemented. You will implement them later in the assignment.

The npm run test command also runs tests from the file prime_test.ts for the functions in prime.ts
which we will look at later in the assignment.

1

1. Nail Our Colors to the Fast (12 points)
The following parts describe coding work.

The provided fib function is a direct translation of the mathematical definition of Fibonacci numbers into
TypeScript, making it easy to understand. Unfortunately, it is unacceptably slow, running in time Θ(2n).

In this problem, you will implement a faster version, fastFib, with the following shape:

export const fastFib = (n: bigint): FibPair => { ... };

This version also takes n as an input, but instead of returning just fn, it returns something called FibPair. The
latter is a record type defined as follows:

export type FibPair = {curFib: bigint, prevFib: bigint};

As you can see, each FibPair includes not only that particular Fibonacci number, in the curFib field, but
also the previous Fibonacci number, in the prevFib field. For example, the 3nd Fibonacci number would be
represented by the record {curFib: 2, prevFib: 1} since f3 = 2 and f2 = 1.

Note that fastFib requires an input n that is at least 1. This is because, for n = 0, there is no such thing
as the previous Fibonacci number, so there isn’t any sensible record to return.

(a) Implement the body of fastFib using recursion. Specifically, a call to fastFib(n), if n is not a base
case, should call fastFib(n-1n).

Use only const declarations. Do not mutate anything!

(b) Verify that the tests for fastFib now pass when you run npm run test.

2. Virtue Is Its Own Record (8 points)
The following parts describe coding work.

Now that we have fastFib, there is no reason to use the old, slow version.

(a) Change the implementation of fib to work by calling fastFib instead.

Note that you cannot simply write “return fastFib(n)” for two reasons. First, fastFib does not
accept all the inputs that fib does. Second, fastFib does not return a bigint, like fib is supposed to.
(It returns a FibPair, which is a record, not an integer.) Your implementation will need to address both
of these issues.

(b) Verify that the tests for fib still pass when you run npm run test.

2

3. The Odd Tuple1 (10 points)
The following parts describe coding work.

The function fastFib, above, used a record to store a given Fibonacci number paired with the previous
one. In general, records and tuples provide equivalent functionality. This means that we could have used tuples
to define our function instead. In this problem, we will do that.

The starter code includes the function fastFib2 that is just like fastFib except that it returns the type
FibPair2 instead of FibPair. The new type is defined as follows:

export type FibPair2 = [bigint, bigint];

This type declaration says that a FibPair2 is two integers, but it doesn’t say which is the current Fibonacci
number and which is the previous one. The comments in the code indicate that the previous number goes first.
For example, the 3nd Fibonacci number would be represented by the pair [1, 2].

This is a nice example of how the type system, while useful, cannot find all bugs for us. In this case, it would
correctly identify the error if we tried to return just 2 instead of [1, 2], but it would not spot the error if we
returned the two numbers in the wrong order, i.e., as [2, 1] rather that [1, 2]. It is important to understand
which errors the type system does and does not catch. We need to be especially careful about the latter category
(only).

(a) Implement the body of fastFib2. Like fastFib it should use recursion, contain only const declarations,
and not mutate anything.

(b) Verify that the tests for fastFib2 now pass when you run npm run test.

1For the record, “tuple” is actually pronounced “too-ple”, but that was too hard to pun.

3

4. Rally the Loops (15 points)
The following parts consist of a mix of written and coding work: parts (a, b) describe coding work and part (c)
describes written work.

The following Java function returns the smallest Fibonacci number that is greater than or equal to m:

public static int nextFib(int m) {
int prevFib = 0;
int curFib = 1;
while (curFib < m) {

int temp = prevFib; // change (prevFib, curFib)
prevFib = curFib; // from (fib(n-1), fib(n)) to (fib(n), fib(n+1))
curFib = curFib + temp;

}
return curFib;

}

The loop works its way up through the Fibonacci numbers, storing each one in turn in the variable curFib, until
it gets to the first one that is greater than or equal to m. In order to calculate the next Fibonacci number, it
needs to also keep track of the Fibonacci number before curFib, which is stored in the variable prevFib.

(The property of this code that, at the top of the loop, curFib = fn and prevFib = fn−1 for some n is
called a “loop invariant”. We will have a lot more to say about those later in the course.)

In this problem, you will write a recursive version of the function above in TypeScript. Unlike the loop above,
our recursive function will not need to mutate any variables.

The starter code includes a function called nextFib that handles the case m = 0 by returning 0. For m ≥ 1,
it calls a function nextFibHelper, which you will implement recursively.

(a) Implement nextFibHelper so that it simulates the loop above using recursion.

In more detail, the function should call itself recursively on each subsequent Fibonacci number until it
gets to the first Fibonacci number that is greater than or equal to m, which it then returns.

Instead of storing the state in local variables, the state of the loop is now recorded in the function
arguments: prevFib, curFib, and m. A call to nextFib(m) will invoke nextFibHelper(0, 1, m).
Those arguments describe the state of the local variables the first time we get to the top of the loop. Your
recursive calls should be made with arguments that go through increasingly larger Fibonacci numbers until
you get to the first one that is greater than or equal to m, at which point the recursion should stop.

(b) Verify that the tests for nextFib now pass when you run npm run test.

(c) We can think of a call to nextFibHelper(prevFib, curFib, m) as asking, what would the loop above
ultimately return if it entered the top of the loop with the three variables having the values of the given
parameters?

Explain in your own words why your recursive implementation answers this question. Relate the loop
condition and loop body to their corresponding parts in your recursive implementation.

4

5. No Rest For the Query (15 points)
The following parts describe coding work.

So far, we have written functions that calculate Fibonacci numbers and related quantities, but users have
no way of using them. In this problem, we will make nextFib available from a user interface.

The provided starter code in index.tsx creates the Root in which we will render the UI, but the provided
UI simply prints out one Fibonacci number. To make this useful, we need to get input from the user. For now,
we will have the user pass their input in using query parameters.

(a) Change the code to look for query parameters called “firstName”, which can be any non-empty-string,
and “age”, which must be a non-negative integer. Have the code render an error message if the name
parameter or the age parameter is missing or invalid. (See the section worksheet for how to do this.2)

(b) Change the code so that, if both parameters are provided and valid, it renders a message telling the user
either that their age is a Fibonacci number (if it is one) or the number of years until their age will be a
Fibonacci number (if it is not one).

For example, if the user’s first name is Jesse and their age is 21, it could render a message like this:

Hi, Jesse! Your age (21) is a Fibonacci number!

whereas if their age was 19, it could render a message like this:

Hi, Jesse! Your age (19) will be a Fibonacci number in 2 years.

(c) Start the server by running the command the command npm run start. Then, point your browser at
http://localhost:8080/?firstName=Jesse&age=21 to check that it works as intended. Try changing
the age to a non-Fibonacci number (like 19) as well.

Also be sure to try changing the first name! You could have accidentally written “Jesse” directly in
the code. In that case, it would look correct if “Jesse” is the only name you tested. Validate that your
error message appears when either parameter is missing also.

6. Once Upon a Prime (14 points)
The following parts describe coding work.

In prime.ts we have included the function isPrime which determines if a positive integer is prime, meaning
it is only a product of 1 and itself. It is implemented recrusively with a helper function isPrimeHelper. Read
these over to make sure you understand how it works; there’s nothing further you need to implement for these.

We have also included the function, isHighlyComposite which determines if a positive integer is highly
composite, meaning it has more divisors than all smaller non-negative integers. It is implemented by calling two
helper functions numDivisors and maxNumDivisors which we will implement in this problem.

(a) In this part you will implement numDivisors which returns the number of integers from 1 to the input
integer, n, which divide evenly into n. It calls a helper function, numDivisorsHelper, with the following
shape:

const numDivisorsHelper = (n: bigint, m: bigint): bigint => { ... }

It returns the number of numbers between 1 and m that divide evenly into n.

Look at how numDivisors calls this function, then complete the numDivisors functionality by im-
plementing numDivisorsHelper.

2Technically, the solution described there, using parseInt, allows non-negative, fractional values by rounding down to the nearest
integer. You could instead use parseFloat and then verify the result is an integer in the manner described in lecture. However, we
will not require that for this assignment.

5

(b) In this part you will implement maxNumDivisors which returns the maximum number of divisors of any
integer input between 1 and n. This function has the following shape:

export const maxNumDivisors = (n: bigint): bigint => { ... }

Implement it by calling only numDivisors and recursively calling maxNumDivisors.

(c) Check out how isHighlyComposite determines if an integer input is highly composite by calling the two
functions you just implemented and make sure you understand how it works.

Verify that the tests for isHighlyComposite and the helper functions now pass when you run npm
run test to confirm that your new functions are working.

7. Partners in Prime (12 points)
The following parts consist of a mix of written and coding work: part (a) describes coding work and part (b)
describes written work.

Now that we additionally can calculate if a number is prime and/or highly composite, we will make this
functionality available from the user interface by add to the output the user sees when they input their name
and age in the query parameters.

(a) Add to the output the user sees when both query parameters are provided and valid, with a message(s)
saying that their age is prime and/or highly composite when that is the case.

For example, if the user’s first name is Jesse and their age is 23, it could render a message like

Hi, Jesse! Your age (23) will be a Fibonacci number in 11 years. Your age is
also prime!

whereas if their age was 24, it could render a message like this:

Hi, Jesse! Your age (24) will be a Fibonacci number in 10 years. Your age is
also highly composite!

If the age is neither prime nor highly composite, nothing additional should to be added to the message. If
the age is both prime and highly composite, both messages should be added.

You should do this by creating two helper functions at the top of index.tsx which call isPrime and
isHighlyComposite respectively and return either a string message indicating the given age fits that case
(being prime or highly composite) or the empty string otherwise. Then call those functions and include
their output in the message for the user.

(b) What are two different ways, other than defining a function, that we could have written the code to
conditionally include these extra messages in the output?

6

8. There’s a Form Brewin’ (14 points)
The following parts describe coding work.

While query parameters work, they are not something that a typical Internet user would know how to use.
In this problem, we will give the user a more natural way to enter this information.

(a) Change the code in index.tsx so that, if the first name and the age parameters are not provided, rather
than rendering an error message, it renders the following HTML:

<form action="/">
<p>Hi there! Please enter the following information:</p>
<p>Your first name: <input type="text" name="firstName"></input></p>
<p>Your age: <input type="number" name="age" min="0"></input></p>
<input type="submit" value="Submit"></input>

</form>

The <input> tags create UI components that allow the user to enter information. The first one with
type="text" creats a standard text box that allows the user to enter any string. The second one with
type="number" and min="0" allows the user to enter non-negative numbers.

The final <input> tag with type="submit" creates a button labelled “Submit” that, when clicked,
will redirect the page to a URL put together by adding query parameters to the URL in the action=".."
attribute of the <form>..</form> tag containing the submit button. Specifically, it adds one query
parameter for each of the (non-submit) <input> tags inside the <form>..</form>, with the parameter
name coming from the name=".." attribute of the <input> tag and the parameter value coming from the
value typed by the user into that input box.

In this case, if the user types “Jesse” into the first input box and “21” into the second input box, then
clicking the submit button will redirect the page to “/?firstName=Jesse&age=21”.

(Note that the type="number" and min="0" attributes on the age <input> tag do not remove
the need to check that the query parameters are valid when present. A user can still type in any query
parameters they want into the URL bar of the browser. Generally, you should still include the error cases
from problem 5a except in the new case where the form should appear instead.)

Run the application and verify that navigating to http://localhost:8080/ shows the form. Then,
verify that you can fill out the form, click “Submit”, and see the expected message from Problem 5. Pressing
the back button should take you back to the form.

(b) Change the HTML shown when the user provides first name and age query parameters so that, in addition
to the message described in Problem 5 and 7, it also includes an <a> tag, labelled “Start Over”, that
navigates back to the form.

Congratulations on completing your first web app of CSE 331!

7

9. Extra Credit: Like Watching Class Grow (0 points)
The UI we created in the previous problem works, but it is pretty bare bones. For extra credit, you can improve
the styling so that it looks more fanciful.

To get credit, you must add your styling in a file, index.css, rather than directly in the code. You will need
to create that file yourself. Once you have done so, you can define classes in the file and then assign classes to
tags using a className=".." attribute in the code. (Make sure you “import ’./index.css’” in index.tsx
so that the CSS is included in the page produced.)

To get credit, you must change at least the following components of styling: background colors, foreground
colors, fonts, borders, and margin or padding.

Make sure the final result looks reasonable. (It must be readable as well as fanciful.)

8

How to Turn In Assignments
All work will be turned in via Gradescope. For each assignment, you will turn in your written work and code
separately. In this assignment, the written work includes only your answer to problems 4(c) and 7(b), but later
assignments will include a larger proportion of written work.

You will turn in your written work to the "HW# Written" assignment on Gradescope. You may handwrite
your work (on a tablet or paper) or type it, provided it is legible and dark enough to read. Please match each
HW problem to the page with the work on Gradescope when you turn in. If you fail to have readible work or
assign pages, you will receive a point deduction.

You will turn in your code to the "HW# Code" assignment on Gradescope. You only need to submit the
final version of the files you worked on in the assignment. We will identify a list of files which you should turn in
at the top of each assignment. You should turn these files in directly, you should not put them in a folder and
turn that folder in.

On Gradescope, there is an autograder that will run when you turn in your code. This may take a few
minutes, but you should always wait for it to complete to view the results, then fix any errors and resubmit.
This means you should not wait until the last minute! Always make sure you leave enough time to fix possible
issues before the deadline.

The autograder will run checks on your code to validate that your submission was successful including that
you turned in only the files we asked for (not too many/few, and not within a folder) and that we will be able to
run your applications to grade them. It will also run the comfy-tslint linter to verify that your code follows our
331 code constructs. Then it will run any tests that we asked you to write and staff tests on your code and tell
you if they failed. The linter and staff tests are worth points, and you should make sure both pass, meaning you
get full points (we will also manually grade your code).

Linter
In this course we have a custom linter, comfy-tslint, which checks that your code follows our course specific
coding conventions. As mentioned above, we run this linter on your code in the autograder when you turn in
your assignment. The linter is not able to catch every coding convention mistake, so you should make sure you
write code that looks similar to the examples we go over in class (note that we may manually grade your code
and deduct for uncaught coding convention issues).

We recommend that you download the VS Code extension so the linter warnings will appear as helpful popups
while you’re coding. Additionally, for each assignment, you can manually run the linter with the command npm
run lint. For example, your output will always have the first two lines listed in the image below, and if your
code has any errors, those will be listed below.

You can always run this command prior to turning in your coding submission to make sure you’ll pass the
linter ahead of time.

9

https://marketplace.visualstudio.com/items?itemName=fencily-golden.comfy-tslint

