
Arrays
Kevin Zatloukal

CSE 331

Indexing

	 at	:	(List,	ℕ)	→	ℤ

	 at(nil	,	n)		 	 :=		undefined
	 at(x	::	L	,	0)	 	 :=		x
	 at(x	::	L	,	n+1)	 :=		at(L,	n)

• Retrieve an element of the list by index
– use "L[j]" as an abbreviation for at(j,	L)

• Not an efficient operation on lists…

Linked Lists in Memory

• Must follow the "next" pointers to find elements
– at(L,	n) is an O(n) operation
– no faster way to do this

1

3

5

2

4L

Faster Implementation of at

• Alternative: store the elements next to each other
– can find the n-th entry by arithmetic:

location	of	L[4]		=		(location	of	L)	+	4	*	sizeof(node)

• Resulting data structure is an array

1 3 52 4

L L[4]

Faster Implementation of at

• Resulting data structure is an array

• Efficient to read L[i]

• Inefficient to…
– insert elements anywhere but the end
– write operations with an immutable ADT
– trees can do all of this in O(log	n) time

1 3 52 4

L L[4]

Access By Index

• Easily access both L[0] and L[n-1], where n	=	len(L)
– can process a list in either direction

• “With great power, comes great responsibility”
— the Peter Parker Principle

• Whenever we write “A[j]”, we must check 0	≤	j	<	n
– new bug just dropped!

with list, we only need to worry about nil and non-nil
once we know L is non-nil, we know L.hd exists

– TypeScript will not help us with this!
type checker does catch “could be nil” bugs, but not this

Recall: Sum List With a Loop

sum-acc(nil,	r)	 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Tail recursive version is a loop

const sum = (S: List<bigint>): bigint => {
 let r = 0;
 // Inv: sum(S0) = r + sum(S)
 while (S.kind !== "nil") {
 r = S.hd + r;

 S = S.tl;
 }

 return r;
};

Change to a version that uses indexes…

Sum List by Index

• Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 // Inv: …
 while (j !== S.length) { // … S.kind !== "nil"
 r = S[j] + r; // … r = S.hd + r
 j = j + 1; // … S = S.tl
 }

 return r;
}; Note that S is no longer changing

Sum List by Index

sum-acc	:	(ℕ,	List,	ℤ)	→	ℤ
	 sum-acc(S,	j,	r)	 :=	r	 	 	 	 	 	 	 if j	=	len(S)
	 sum-acc(S,	j,	r)	 :=	sum-acc(S,	j+1,	S[j]	+	r)	 	 if j	<	len(S)

• Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 // Inv: …
 while (j !== S.length) {
 r = S[j] + r;

 j = j + 1;
 }

 return r;
};

Sublists

• Use indexes to refer to a section of a list (a "sublist"):

	 sublist	:	(List,	ℤ,	ℤ)		→	ℤ

	 sublist(L,	i,	j)	 	 :=		nil	 	 	 	 	 if j	<	i
	 sublist(L,	i,	j)	 	 :=		L[i]	::	sublist(L,	i	+	1,	j)	 if i	≤	j

• Useful for reasoning about lists and indexes

• This includes both L[i] and L[j]
sublist(L,	0,	2)	 =	L[0]	::	sublist(L,	1,	2)	 	 	 	 def of sublist (since 0	≤	2)
	 	 	 =	L[0]	::	L[1]	::	sublist(L,	2,	2)	 	 	 def of sublist (since 1	≤	2)
	 	 	 =	L[0]	::	L[1]	::	L[2]	::	sublist(L,	3,	2)	 	 def of sublist (since 2	≤	2)
	 	 	 =	L[0]	::	L[1]	::	L[2]	::	nil	 	 	 	 def of sublist (since 3	<	2)
	 	 	 =	[L[0],	L[1],	L[2]]

Sublists

• Use indexes to refer to a section of a list (a "sublist"):

	 sublist	:	(List,	ℤ,	ℤ)		→	ℤ

	 sublist(L,	i,	j)	 	 :=		nil	 	 	 	 	 if j	<	i
	 sublist(L,	i,	j)	 	 :=		L[i]	::	sublist(L,	i	+	1,	j)	 if i	≤	j

• The sublist is empty when the range is empty

 sublist(L,	3,	2)	=	nil

– weird-looking example that comes up a lot:

 sublist(L,	0,	-1)	=	nil

– not an array out of bonds error! (this is math, not Java)

Sublists

sublist	:	(List,	ℤ,	ℤ)		→	ℤ

	 sublist(L,	i,	j)	 	 :=		nil	 	 	 	 	 if j	<	i
	 sublist(L,	i,	j)	 	 :=		L[i]	::	sublist(L,	i	+	1,	j)	 if i	≤	j

• Will use "L[i	..	j]" as shorthand for "sublist(L,	i,	j)"
– again, using an operator for most common operations

• Some useful facts about sublists:

L	=	L[0	..	len(L)-1]	 	 	

L[i	..	j]	=	L[i	..	k]	⧺	L[k+1	..	j]	 for any	k	with	i	–	1	≤	k	≤	j		(and 0	≤	i	≤	j	<	n)

Sum List by Index

sum-acc(S,	j,	r)	 :=	r	 	 	 	 	 	 	 if j	=	len(S)
	 sum-acc(S,	j,	r)	 :=	sum-acc(S,	j+1,	S[j]	+	r)	 	 if j	<	len(S)

• Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 // Inv: … ?? …
 while (j != S.length) {
 r = S[j] + r;
 j = j + 1;

 }

 return r;
};

Still need to fill in Inv…

Need a version using indexes.

Recall: Sum List With a Loop

sum-acc(S,	j,	r)	 :=	r	 	 	 	 	 	 	 if j	=	len(S)
	 sum-acc(S,	j,	r)	 :=	sum-acc(S,	j+1,	S[j]	+	r)	 	 if j	<	len(S)

• Tail recursive version is a loop

const sum = (S: List<bigint>): bigint => {
 let r = 0;
 // Inv: sum(S0) = r + sum(S)
 while (S.kind !== "nil") {
 r = S.hd + r;

 S = S.tl;
 }

 return r;
}; Inv says sum(S0) is r plus sum of rest (S)

Not the most explicit way of explaining "r"…

Recall: Sum List With a Loop

• "r" contains sum of the part of the list seen so far

• Can explain this more simply with indexes…
– no longer need to move S

sum(S0)	=	 	 	 				r	 	 	 							+	 	 								sum(S)

SS0

Using Sublists With Loops

• Sum is the part in "r" plus the part left in S[j	..	n-1]

• What sum is in "r"?

 r	=	sum(S[0	..	j-1])

– we can use just this as our invariant! (it's all we need)

sum(S)	=	 	 	 				r	 	 	 							+	 	 sum(S[j	..	n-1])

j
S

Using Sublists With Loops

• Array version uses access by index

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 // Inv: r = sum(S[0 .. j-1])
 while (j != S.length) {
 r = S[j] + r;

 j = j + 1;
 }

 return r;
}; Are we sure this is right?

Let's think it through…

Sum of an Array

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 {{	r	=	0	and	j	=	0	}}
 {{	Inv:	r	=	sum(S[0	..	j-1])	}}
 while (j != S.length) {
 r = S[j] + r;

 j = j + 1;
 }

 return r;
};

Does Inv hold initially?

sum(S[0	..	j-1])
		=	sum(S[0	..	-1])	 	 since j	=	0
			=	sum([])
			=	0	 	 	 	 def of sum
			=	r

Sum of an Array

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 {{	Inv:	r	=	sum(S[0	..	j-1])	}}
 while (j != S.length) {
 r = S[j] + r;

 j = j + 1;

 }
 {{	r	=	sum(S[0	..	j-1])	and	j	=	len(S)	}}
 {{	r	=	sum(S)	}}
 return r;
};

Does the postcondition hold?

r	=	sum(S[0	..	j-1])
			=	sum(S[0	..	len(S)-1])	 since j	=	len(S)
			=	sum(S)
		

Sum of an Array

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 {{	Inv:	r	=	sum(S[0	..	j-1])	}}
 while (j != S.length) {
 {{	r	=	sum(S[0	..	j-1])	and	j	≠	len(S)	}}
 r = S[j] + r;

 j = j + 1;
 {{	r	=	sum(S[0	..	j-1])	}}
 }
 return r;
};

Sum of an Array

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 {{	Inv:	r	=	sum(S[0	..	j-1])	}}
 while (j != S.length) {
 {{	r	=	sum(S[0	..	j-1])	and	j	≠	len(S)	}}
 r = S[j] + r;

 {{	r	=	sum(S[0	..	j])	}}
 j = j + 1;

 {{	r	=	sum(S[0	..	j-1])	}}
 }

 return r;
};

Sum of an Array

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 {{	Inv:	r	=	sum(S[0	..	j-1])	}}
 while (j != S.length) {
 {{	r	=	sum(S[0	..	j-1])	and	j	≠	len(S)	}}
 {{	S[j]	+	r	=	sum(S[0	..	j])	}}
 r = S[j] + r;
 {{	r	=	sum(S[0	..	j])	}}
 j = j + 1;
 {{	r	=	sum(S[0	..	j-1])	}}
 }
 return r;
};

Sum of an Array

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 {{	Inv:	r	=	sum(S[0	..	j-1])	}}
 while (j != S.length) {
 {{	r	=	sum(S[0	..	j-1])	and	j	≠	len(S)	}}
 {{	S[j]	+	r	=	sum(S[0	..	j])	}}
 r = S[j] + r;
 {{	r	=	sum(S[0	..	j])	}}
 j = j + 1;
 {{	r	=	sum(S[0	..	j-1])	}}
 }
 return r;
};

Is this valid?

Sum of an Array

{{	r	=	sum(S[0	..	j-1])	and	j	≠	len(S)	}}
 {{	S[j]	+	r	=	sum(S[0	..	j])	}}

S[j]	+	r
		=	S[j]	+	sum(S[0	..	j-1])	 	 	 since r	=	sum(S[0	..	j-1])	
		=	sum(S[0	..	j-1])	+	S[j]
		=	sum(S[0	..	j-1])	+	sum([S[j]])		 def of sum
		=	sum(S[0	..	j-1])	+	sum(S[j	..	j])

Sum of an Array

{{	r	=	sum(S[0	..	j-1])	and	j	≠	len(S)	}}
 {{	S[j]	+	r	=	sum(S[0	..	j])	}}

S[j]	+	r
		=	S[j]	+	sum(S[0	..	j-1])	 	 	 since r	=	sum(S[0	..	j-1])	
		=	sum(S[0	..	j-1])	+	S[j]
		=	sum(S[0	..	j-1])	+	sum([S[j]])		 def of sum
		=	sum(S[0	..	j-1])	+	sum(S[j	..	j])
		=	…
		=	sum(S[0	..	j])

Sum of an Array

{{	r	=	sum(S[0	..	j-1])	and	j	≠	len(S)	}}
 {{	S[j]	+	r	=	sum(S[0	..	j])	}}

S[j]	+	r
		=	S[j]	+	sum(S[0	..	j-1])	 	 	 since r	=	sum(S[0	..	j-1])	
		=	sum(S[0	..	j-1])	+	S[j]
		=	sum(S[0	..	j-1])	+	sum([S[j]])		 def of sum
		=	sum(S[0	..	j-1])	+	sum(S[j	..	j])
		=	…
		=	sum(S[0	..	j-1]	⧺	S[j	..	j])
		=	sum(S[0	..	j])

• We saw that len(L	⧺	R)	=	len(L)	+	len(R)

• Does sum(L	⧺	R)	=	sum(L)	+	sum(R)?
– Yes! Very similar proof by structural induction. (Call this Lemma 3)

Sum of an Array

{{	r	=	sum(S[0	..	j-1])	and	j	≠	len(S)	}}
 {{	S[j]	+	r	=	sum(S[0	..	j])	}}

S[j]	+	r
		=	S[j]	+	sum(S[0	..	j-1])	 	 	 since r	=	sum(S[0	..	j-1])	
		=	sum(S[0	..	j-1])	+	S[j]
		=	sum(S[0	..	j-1])	+	sum([S[j]])		 def of sum
		=	sum(S[0	..	j-1])	+	sum(S[j	..	j])
	=	sum(S[0	..	j-1]	⧺	S[j	..	j])	 	 	 by Lemma 3
		=	sum(S[0	..	j])

(The need to reason by induction comes up all the time.)

Sum of an Array

{{	r	–	S[j-1]	=	sum(S[0	..	j-2])	and	j-1	≠	len(S)	}}
 {{	r	=	sum(S[0	..	j-1])	}}

r	=	S[j-1]	+	sum(S[0	..	j-2])	 	 	 	 since r	–	S[j-1]	=	sum(S[0	..	j-2])	
		=	sum(S[0	..	j-2])	+	S[j-1]
		=	sum(S[0	..	j-2])	+	sum([S[j-1]])	 	 def of sum
		=	sum(S[0	..	j-2])	+	sum(S[j-1	..	j-1])
		=	…
		=	sum(S[0	..	j-2]	⧺	S[j-1	..	j-1])
		=	sum(S[0	..	j-1])

• We saw that len(L	⧺	R)	=	len(L)	+	len(R)

• Does sum(L	⧺	R)	=	sum(L)	+	sum(R)?
– Yes! Very similar proof by structural induction. (Call this Lemma 3)

Sum of an Array

{{	r	–	S[j-1]	=	sum(S[0	..	j-2])	and	j-1	≠	len(S)	}}
 {{	r	=	sum(S[0	..	j-1])	}}

r	=	S[j-1]	+	sum(S[0	..	j-2])	 	 	 	 since r	–	S[j-1]	=	sum(S[0	..	j-2])	
		=	sum(S[0	..	j-2])	+	S[j-1]
		=	sum(S[0	..	j-2])	+	sum([S[j-1]])	 	 def of sum
		=	sum(S[0	..	j-2])	+	sum(S[j-1	..	j-1])
		=	sum(S[0	..	j-2]	⧺	S[j-1	..	j-1])	 	 	 by Lemma 3
		=	sum(S[0	..	j-1])

(The need to reason by induction comes up all the time.)

Linear Search of a List

contains(nil,	y)	 :=	false	 	 	 	 	 	
	 contains(x	::	L,	y)	 :=	true	 	 	 if x	=	y
	 contains(x	::	L,	y)	 :=	contains(L,	y)	 if x	≠	y

• Tail-recursive definition from HW5

const contains =
 (S: List<bigint>, y: bigint): bigint => {
 // Inv: contains(S0, y) = contains(S, y)
 while (S.kind !== "nil" && S.hd !== y) {
 S = S.tl;
 }

 return S.kind !== "nil"; // implies S.hd === y
};

Change to a version that uses indexes…

Linear Search of an Array

contains(nil,	y)	 :=	false	 	 	 	 	 	
	 contains(x	::	L,	y)	 :=	true	 	 	 if x	=	y
	 contains(x	::	L,	y)	 :=	contains(L,	y)	 if x	≠	y

• Change to using an array and accessing by index

const contains =
 (S: Array<bigint>, y: bigint): bigint => {
 let j = 0;
 // Inv: …
 while (j !== S.length && S[j] !== y) {
 j = j + 1;

 }

 return j !== S.length;
};

S.hd with S changing becomes
S[j] with j changing

What is the invariant now?

Linear Search of an Array

contains(nil,	y)	 :=	false	 	 	 	 	 	
	 contains(x	::	L,	y)	 :=	true	 	 	 if x	=	y
	 contains(x	::	L,	y)	 :=	contains(L,	y)	 if x	≠	y

• Change to using an array and accessing by index

const contains =
 (S: Array<bigint>, y: bigint): bigint => {
 let j = 0;
 // Inv: contains(S, y) = contains(S[j .. n-1], y)
 while (j !== S.length && S[j] !== y) {
 j = j + 1;

 }

 return j !== S.length;
};

Can we explain this better?

Linear Search of an Array

• What do we know about the left segment?
– it does not contain "y"
– that's why we kept searching

contains(S,	y)	=	 	 	 	 	 	 	 		contains(S[j	..	n-1],	y)

j

S

j

S __	≠	y

Linear Search of an Array

• Update the invariant to be more informative

const contains =
 (S: Array<bigint>, y: bigint): bigint => {
 let j = 0;
 // Inv: S[i] /= y for any i = 0 .. j-1
 while (j !== S.length && S[j] !== y) {
 j = j + 1;

 }
 return j !== S.length;
};

j

S __	≠	y

Facts About Sublists

• “With great power, comes great responsibility”

• Since we can easily access any L[j],
may need to keep track of facts about it
– may need facts about every element in the list

applies to preconditions, postconditions, and intermediate assertions

• We can write facts about several elements at once:
– this says that elements at indexes 0	..	j-1 are not y

	 S[i]	≠	y	 	 for any 0	≤	i	<	j

– shorthand for j facts: S[0]	≠	y,	…,	S[j-1]	≠	y

Reasoning Toolkit

Description Testing Tools Reasoning

no mutation full coverage type checker calculation
induction

local variable mutation “ “ Floyd logic

heap state “ “ rep invariants

arrays “ “ for-any facts

Facts About Sublists

• “With great power, comes great responsibility”
– since we can easily access any L[j], may need facts about it

• We can write facts about several elements at once:
– this says that elements at indexes 0	..	j-1 are not y

	 S[i]	≠	y	 	 for any 0	≤	i	<	j

• These facts get hard to write down!
– we will need to find ways to make this easier
– a common trick is to draw pictures instead…

Visual Presentation of Facts

• Just saw this example

• But we have seen "for any" facts with BSTs…

– "for any" facts are common in more complex code
– drawing pictures is a typical coping mechanism

j

S __	≠	y

x

L R

contains-key(y,	L)		→		(y	<	x)
contains-key(z,	R)		→		(x	<	z)

Recall: Linear Search of an Array

• Let's check the correctness of this loop (w/ pictures)

const contains =
 (S: Array<bigint>, y: bigint): boolean => {
 let j = 0;
 // Inv: S[k] /= y for any k = 0 .. j-1
 while (j !== S.length && S[j] !== y) {
 j = j + 1;

 }
 return j !== S.length;
};

j

S __	≠	y

Inv: gold part contains no y

Linear Search of an Array

const contains =
 (S: Array<bigint>, y: bigint): boolean => {
 let j = 0;
 {{	j	=	0	}}
 {{	Inv:	S[i]	≠	y		for	any	0	≤	i	≤	j	–	1	}}
 while (j !== S.length && S[j] !== y) {
 j = j + 1;

 }
 return j !== S.length;
};

j

S __	≠	y

What is the picture when j	=	0?

j

S

Inv holds because there is no gold part.

Linear Search of an Array

const contains =
 (S: Array<bigint>, y: bigint): boolean => {
 let j = 0;
 {{	Inv:	S[i]	≠	y		for	any	0	≤	i	≤	j	–	1	}}
 while (j !== S.length && S[j] !== y) {
 {{	(S[i]	≠	y		for	any	0	≤	i	≤	j	–	1)	and	j	≠	len(S)	and	S[j]	≠	y	}}
 j = j + 1;

 {{	S[i]	≠	y		for	any	0	≤	i	≤	j	–	1	}}
 }

 return j !== S.length;
};

j

S __	≠	y

Linear Search of an Array

const contains =
 (S: Array<bigint>, y: bigint): boolean => {
 let j = 0;
 {{	Inv:	S[i]	≠	y		for	any	0	≤	i	≤	j	–	1	}}
 while (j !== S.length && S[j] !== y) {
 {{	(S[i]	≠	y		for	any	0	≤	i	≤	j	–	1)	and	j	≠	len(S)	and	S[j]	≠	y	}}
 {{	S[i]	≠	y		for	any	0	≤	i	≤	j	}}
 j = j + 1;
 {{	S[i]	≠	y		for	any	0	≤	i	≤	j	–	1	}}
 }
 return j !== S.length;
};

j

S __	≠	y

Is this valid?

Linear Search of an Array

{{	(S[i]	≠	y		for	any	0	≤	i	≤	j	–	1)	and	j	≠	len(S)	and	S[j]	≠	y	}}
 {{	S[i]	≠	y		for	any	0	≤	i	≤	j	}}

• What does the top assertion say about S[j]?
– it is not y

j

S __	≠	y

Linear Search of an Array

{{	(S[i]	≠	y		for	any	0	≤	i	≤	j	–	1)	and	j	≠	len(S)	and	S[j]	≠	y	}}
 {{	S[i]	≠	y		for	any	0	≤	i	≤	j	}}

• What is the picture for the bottom assertion?

• Do the facts above imply this holds?
– Yes! It's the same picture

j

S __	≠	y

j

S __	≠	y
j+1

Linear Search of an Array

{{	(S[i]	≠	y		for	any	0	≤	i	≤	j	–	1)	and	j	≠	len(S)	and	S[j]	≠	y	}}
 {{	S[i]	≠	y		for	any	0	≤	i	≤	j	}}

• What is the picture for the bottom assertion?

• Most likely bug is an off-by-one error
– must check S[j], not S[j-1] or S[j+1]

j

S __	≠	y

j

S __	≠	y
j+1

Linear Search of an Array

const contains =
 (S: Array<bigint>, y: bigint): boolean => {
 let j = 0;
 {{	Inv:	S[i]	≠	y		for	any	0	≤	i	≤	j	–	1	}}
 while (j !== S.length && S[j] !== y) {
 j = j + 1;

 }

 {{	Inv	and	(j	=	len(S)	or	S[j]	=	y)	}}
 {{	contains(S,	y)	=	(j	≠	len(S))	}}
 return j !== S.length;
};

j

S __	≠	y

"or" means cases…

Case j	≠	len(S):
Must have S[j]	=	y.

What does Inv say now?

j
__	≠	y y

Code should and does return true.

Linear Search of an Array

const contains =
 (S: Array<bigint>, y: bigint): boolean => {
 let j = 0;
 {{	Inv:	S[i]	≠	y		for	any	0	≤	i	≤	j	–	1	}}
 while (j !== S.length && S[j] !== y) {
 j = j + 1;

 }

 {{	Inv	and	(j	=	len(S)	or	S[j]	=	y)	}}
 {{	contains(S,	y)	=	(j	≠	len(S))	}}
 return j !== S.length;
};

j

S __	≠	y

Case j	=	len(S):
What does Inv say now?

"or" means cases…

j

__	≠	y

Says y is not in the array!
Code should and does return false.

Finding an Element in an Array

• Can search for an element in an array as follows

	 contains(nil,	y)	 :=	false	 	 	 	 	 	
	 contains(x	::	L,	y)	 :=	true	 	 	 if x	=	y
	 contains(x	::	L,	y)	 :=	contains(L,	y)	 if x	≠	y

• Searches through the array in linear time
– did the same on lists

• Can be done more quickly if the list is sorted
– binary search!

Finding an Element in a Sorted Array

• Can search more quickly if the list is sorted
– precondition is A[0]	≤	A[1]	≤	…	≤	A[n-1] (informal)
– write this formally as

	 A[j]	≤	A[j+1]	for	any	0	≤	j	≤	n	–	2

• Not easy to describe this visually…
– how about a gradient?

S

Binary Search of an Array

const bsearch = (S: …, y: …): boolean => {
 let j = 0, k = S.length;
 {{	Inv:	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}
 while (j !== k) {
 const m = (j + k) / 2n;
 if (S[m] < y) {
 j = m + 1;

 } else {
 k = m;

 }
 }

 return (S[k] === y);
};

j

S __	<	y
k

y	≤	__

Inv includes facts about two regions.

Let's check that this is right…

Binary Search of an Array

const bsearch = (S: …, y: …): boolean => {
 let j = 0, k = S.length;
 {{	j	=	0	and	k	=	n	}}
 {{	Inv:	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}

• What does the picture look like with j	=	0 and k	=	n?

• Does this hold?
– Yes! It's vacuously true

j

S __	<	y
k

y	≤	__

j k

Binary Search of an Array

const bsearch = (S: …, y: …): boolean => {
 let j = 0, k = S.length;
 {{	Inv:	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}
 while (j !== k) {
 …
 }

 {{	Inv	and	(j	=	k)	}}
 {{	contains(S,	y)	=	(S[y]	=	y)	}}
 return (S[k] === y);
};

j

S __	<	y
k

y	≤	__

Binary Search of an Array

{{	Inv	and	(j	=	k)	}}
 {{	contains(S,	y)	=	(S[y]	=	y)	}}
 return (S[k] === y);
};

• What does the picture look like with j	=	k?

• Does S contain y iff S[k]	=	y?
– If S[k]	=	y, then contains(S,	y)	=	true
– If S[k]	≠	y, then S[k]	<	y	and S[i]	<	y for every k	<	i, so contains(S,	y)	=	false

j

S __	<	y
k

y	≤	__

j	=	k

__	<	y y	≤	__

What case are we missing?

Binary Search of an Array

{{	Inv	and	(j	=	k)	}}
 {{	contains(S,	y)	=	(S[y]	=	y)	}}
 return (S[k] === y);
};

• What does the picture look like with j	=	k	=	n?

• In this case…
– we see that contains(S,	y)	=	false
– and the code returns false because "undefined === y" is false

(Okay, but yuck.)

j

S __	<	y
k

y	≤	__

j	=	k	=	n
__	<	y

Binary Search of an Array

{{	Inv:	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}
 while (j !== k) {
 {{	Inv	and	(j	<	k)	}}
 const m = (j + k) / 2n;
 if (S[m] < y) {
 j = m + 1;

 } else {
 k = m;
 }

 {{	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}
 }

j

S __	<	y
k

y	≤	__

Reason through both paths…

Binary Search of an Array

{{	Inv	and	(j	<	k)	}}
 const m = (j + k) / 2n;
 if (S[m] < y) {
 {{	Inv	and	(j	<	k)	and	(S[m]	<	y)	}}
 j = m + 1;
 } else {
 {{	Inv	and	(j	<	k)	and	(S[m]	≥	y)	}}
 k = m;
 }

 {{	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}
 }

j

S __	<	y
k

y	≤	__

Binary Search of an Array

const m = (j + k) / 2n;
 if (S[m] < y) {
 {{	Inv	and	(j	<	k)	and	(S[m]	<	y)	}}
 {{	(S[i]	<	y		for	any	0	≤	i	<	m+1)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}
 j = m + 1;
 } else {
 {{	Inv	and	(j	<	k)	and	(S[m]	≥	y)	}}
 {{	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	m	≤	i	<	n)	}}
 k = m;

 }
 {{	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}

j

S __	<	y
k

y	≤	__

Binary Search of an Array

const m = (j + k) / 2n;
 if (S[m] < y) {
 {{	Inv	and	(j	<	k)	and	(S[m]	<	y)	}}
 {{	(S[i]	<	y		for	any	0	≤	i	<	m+1)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}
 j = m + 1;
 } …

j

S __	<	y
k

y	≤	__
m

• What does the picture look like in the bottom assertion?

• Does this hold?
– Yes! Because the array is sorted (everything before S[m] is even smaller)

__	<	y
k

y	≤	__
m

Binary Search of an Array

const m = (j + k) / 2n;
 … else {
 {{	Inv	and	(j	<	k)	and	(S[m]	≥	y)	}}
 {{	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	m	≤	i	<	n)	}}
 k = m;
 }

j

S __	<	y
k

y	≤	__
m

• What does the picture look like in the bottom assertion?

• Does this hold?
– Yes! Because the array is sorted (everything after S[m] is even larger)

j

__	<	y y	≤	__
m

Binary Search of an Array

const bsearch = (S: …, y: …): boolean => {
 let j = 0, k = S.length;
 {{	Inv:	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}
 while (j !== k) {
 const m = (j + k) / 2n;
 if (S[m] < y) {
 j = m + 1;

 } else {
 k = m;

 }
 }

 return (S[k] === y);
};

j

S __	<	y
k

y	≤	__

Does this terminate?

Need to check that k	–	j decreases
Can see that j	≤	m	≤	k, so
the "then" branch is fine.
Can see that j	<	k implies m	<	k
(integer division rounds down), so
the "else" branch is also fine

Loop Invariants

Loop Invariants with Arrays

• Previous example:

{{	Inv:	s	=	sum(S[0	..	j	–	1])	…	}}	 	 	 	 	 sum of array
{{	Post:	s	=	sum(S[0	..	n	–	1])	}}

– in this case, Post is a special case of Inv (where j	=	n)
– in other words, Inv is a weakening of Post

• Heuristic for loop invariants: weaken the postcondition
– assertion that allows postcondition as a special case
– must also allow states that are easy to prepare

Heuristic for Loop Invariants

• Loop Invariant allows both start and stop states
– describing more states = weakening

{{	P	}}
{{	Inv:	I	}}
while (cond) {
 S
}
{{	Q	}}

– usually are many ways to weaken it…

QIP

Loop Invariants with Arrays

• Previous example

{{	Inv:	s	=	sum(S[0	..	j	–	1])	…	}}	 	 	 	 	 sum of array
{{	Post:	s	=	sum(S[0	..	n	–	1])	}}

• Linear search also fits this pattern:

{{	Inv:	S[i]	≠	y	for	any	0	≤	i	<	j	}}		 	 	 	 search an array
{{	Post:	(S[i]	=	y)	or	(S[i]	≠	y	for	any	0	≤	i	<	n)	}}

– less obvious but still a weakening

Searching a Sorted Array

• Suppose we require A to be sorted:
– precondition includes

A[j–1]	≤	A[j]	for	any	1	≤	j	<	n	 	 (where n	:=	A.length)

• Want to find the index k where “x” would be…
– picture would look like this:

0 k n

A __	<	x x	≤	__

Searching a Sorted Array

• End with complete knowledge of A[i] vs x
– how can we describe partial knowledge?
– know some elements are smaller and some larger

0 k n

A __	<	y y	≤	__

0 k n

A

j

A[i]	<	y	for	any	0	≤	i	<	j y	≤	A[i]	for	any	k	≤	i	<	n

Loop Invariants with Arrays

• Previous example

{{	Inv:	s	=	sum(S[0	..	j	–	1])	…	}}	 	 	 	 	 sum of array
{{	Post:	s	=	sum(S[0	..	n	–	1])	}}

• Linear search also fits this pattern:

{{	Inv:	S[i]	≠	y	for	any	0	≤	i	<	j	}}		 	 	 	 search an array
{{	Post:	(S[i]	=	y)	or	(S[i]	≠	y	for	any	0	≤	i	<	n)	}}

• Binary search also still fits this pattern

{{	Inv:	(S[i]	<	y		for	any	0	≤	i	<	j)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}
{{	Post:	(S[i]	<	y		for	any	0	≤	i	<	k)	and	(y	≤	S[i]	for	any	k	≤	i	<	n)	}}

Loop Invariants

• Heuristic for loop invariants: weaken the postcondition
– assertion that allows postcondition as a special case
– must also allow states that are easy to prepare

• 421 covers complex heuristics for finding invariants…
– for 331, this heuristic is enough
– (will give you the invariant for anything more complex)

Writing Loops

Writing Loops

• Examples so far have been code reviews
– checking correctness of given code

• Steps to write a loop to solve a problem:
1. Come up with an idea for the loop
2. Formalize the idea in the invariant
3. Write the code so that it is correct with that invariant

• Let's see some examples…

Recall: Sum of an Array

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = 0;
 // Inv: r = sum(S[0 .. j-1])
 while (j != S.length) {
 r = S[j] + r;

 j = j + 1;

 }
 return r;
};

r	=	sum(S[0	..	j-1])
j

S

Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = ??
 // Inv: r = sum(S[0 .. j])
 while (??) {
 r = ??

 j = j + 1;

 }
 return r;
};

How do we fill in the blanks
to make this code correct?

r	=	sum(S[0	..	j]) j

S

Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = ??
 // Inv: r = sum(S[0 .. j])

• What do we set	j	to so that sum(S[0	..	j])	=	0?
– must set it to -1:

sum(S[0	..	-1])	=	sum([])	=	0

r	=	sum(S[0	..	j]) j

S

Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = -1;
 // Inv: r = sum(S[0 .. j])
 while (??) {
 …

 }

 {{	Post:	r	=	sum(S[0	..	n-1])	}}
 return r;
};

r	=	sum(S[0	..	j]) j

S

When do we exit to ensure that
sum([0	..	j])	=	sum(S[0	..	n-1])?

Exit when j	=	n	–	1

Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = -1;
 // Inv: r = sum(S[0 .. j])
 while (j !== S.length - 1) {
 {{	r	=	sum(S[0	..	j])	and	j	≠	n	–	1	}}
 r = ??

 j = j + 1;
 {{	r	=	sum(S[0	..	j])	}}
 }
 return r;
};

r	=	sum(S[0	..	j]) j

S

Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = -1;
 // Inv: r = sum(S[0 .. j])
 while (j !== S.length - 1) {
 {{	r	=	sum(S[0	..	j])	and	j	≠	n	–	1	}}
 r = ??

 {{	r	=	sum(S[0	..	j+1])	}}
 j = j + 1;

 {{	r	=	sum(S[0	..	j])	}}
 }

r	=	sum(S[0	..	j]) j

S

Let's draw the second picture…

Sum of an Array (version 2)

{{	r	=	sum(S[0	..	j])	and	j	≠	n	–	1	}}
 r = ??

 {{	r	=	sum(S[0	..	j+1])	}}

r	=	sum(S[0	..	j]) j

S

• What is the picture in the second case?

• What do we add to r to make this hold?
– must add in S[j+1]

r	=	sum(S[0	..	j+1]) j j+1

Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {
 let r = 0;
 let j = -1;
 // Inv: r = sum(S[0 .. j])
 while (j !== S.length - 1) {
 r = S[j+1] + r;

 j = j + 1;

 }
 return r;
};

r	=	sum(S[0	..	j]) j

S

This code is correct by construction.

Different from r	=	sum(S[0	..	j-1])
but does the same thing.

