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Local Variable Mutation & Memory Use

• With only straight-line code & conditionals…
– it seems like it saves memory
– but it does not (compiler would fix anyway)

• With loops…
– it really does save memory

no improvement in running time

– but loops cannot be used in all cases
some problems really do require more memory

• When can loops be used and when not?



Sum of the Values in a List

• Recursive function to calculate sum of list

	 	sum(nil)		 :=	0
	 	sum(x	::	L)	 :=	x	+	sum(L)

• Loop to calculate sum of a list

{{	L	=	L0	}}
let s: bigint = 0n;
{{	Inv:	sum(L0)	=	s	+	sum(L)	}}
while (L.kind !== "nil") {
  s = s + L.hd;
  L = L.tl;

}

{{	s	=	sum(L0)	}}

Recursion can be directly
translated into code



Sum of the Values in a List

Loop

{{	L	=	L0	}}
let s: bigint = 0n;

{{	Inv:	sum(L0)	=	s	+	sum(L)	}}
while (L.kind !== "nil") {
  s = s + L.hd;

  L = L.tl;
}

{{	s	=	sum(L0)	}}

Recursion

const sum = (L: List): bigint => {

  if (L.kind === "nil") {
    return 0n;
  } else {
    return L.hd + sum(L.tl);
  }

}

Both run in O(n) time where n	=	len(L)

Loop uses O(1) extra memory, but right does not…



Recursive Version of Sum

L	=	1	::	2	::	3	::	nil
line 4

const sum = (L: List): bigint => {

1  if (L.kind === "nil") {
2    return 0n;
3  } else {
4    return L.hd + sum(L.tl);
5  }

}

… sum(1 :: 2 :: 3 :: nil) …

L	=	2	::	3	::	nil
line 4

L	=	3	::	nil
line 4

L	=	nil
line 2

returns 0

returns 3

returns 5

returns 6

List of length 3 takes 4 calls
List of length n takes n+1 calls.

Call uses O(n) memory,
where n	=	len(L)



How much does this matter?

• In principle, this extra memory usually not a problem
– O(n) time is usually the more important constraint

• In practice, sometimes we are memory constrained
– in the browser, sum(L) exceeds stack size at len(L)	=	10,000

• Loops ≫ Recursion?

• Nope!
1. Loops do not always use less memory.
2. Recursion can solve more problems than loops.
3. Extra memory use pays for some other benefits.



Another Sum of the Values in a List

• Saw another summation function in Topic 5

	 	sum-acc(nil,	r)	 :=	r
	 	sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Translates to the following code

const sum_acc = (L: List, r: bigint): bigint => {

  if (L.kind === "nil") {
    return r;
  } else {
    return sum_acc(L.tl, L.hd + r);
  }
}



Recursive Version of Sum

L	=	1	::	2	::	3	::	nil
r	=	0
line 4

const sum_acc =
  (L: List, r: bigint): bigint => {

1  if (L.kind === "nil") {
2    return r;
3  } else {
4    return sum_acc(L.tl, L.hd + r);
5  }
}

… sum_acc(1 :: 2 :: 3 :: nil, 0) …

L	=	2	::	3	::	nil
r	=	1
line 4

L	=	3	::	nil
r	=	3
line 4

L	=	nil
r	=	6
line 2

returns 6

returns 6

returns 6

returns 6

Same return value means no need
to remember where we were.

No need to keep stack old frames!
Tail call optimization reuses them…

This is a "tail call" and "tail recursion".



Recursive Version of Sum

L	=	1	::	2	::	3	::	nil
r	=	0
line 4

const sum_acc =
  (L: List, r: bigint): bigint => {

1  if (L.kind === "nil") {
2    return r;
3  } else {
4    return sum_acc(L.tl, L.hd + r);
5  }
}

… sum_acc(1 :: 2 :: 3 :: nil, 0) …

L	=	2	::	3	::	nil
r	=	1
line 4

L	=	3	::	nil
r	=	3
line 4

L	=	nil
r	=	6
line 2

returns 6

Tail call optimization reuses
stack frames so only O(1) memory

What does this look like? A loop!

sum_acc calculates the same values
in the same order as the loop



Loops vs Tail Recursion 

• Tail-call optimization turns tail recursion into a loop

• Functional languages implement tail-call optimization
– standard feature of such languages
– you don't write loops; you write tail recursive functions

• Chrome added tail-call optimization… then dropped it!
– loops / tail-call optimization have downsides (more later…)
– it no longer does this automatically

you must manually convert to a loop if you require O(1) memory



Loops vs Tail Recursion 

Ordinary Loops   ≤   Tail Recursion  (with tail-call optimization)

• Tail recursion can solve all problems loop can
– any loop can be translated to tail recursion
– both use O(1) memory with tail-call optimization

• Translation is simple and important to understand

• Tells us that Ordinary Loops ≪ Recursion
– correspond to the special case of tail recursion



Loop to Tail Recursion

const myLoop = (R: List): T => {
  let s = f(R);
  while (R.kind !== "nil") {
    s = g(s, R.hd);
    R = R.tl;
  }

  return h(s);
};

• Tail-recursive function that does same calculation:

	 my-acc(nil,	s)		 :=	h(s)	 	 	 	 	 after loop
	 my-acc(x	::	L,	s)	 :=	my-acc(L,	g(s,	x))	 	 loop body

 my-func(L)	 :=	my-acc(L,	f(L))		 	 	 before loop

{{ Inv:	my-acc(R0,	s0)	=	my-acc(R,	s)	}}



Example 1: Loop to Tail Recursion

const sumLoop = (R: List): bigint => {
  let s = 0;
  while (R.kind !== "nil") {
    s = s + R.hd;
    R = R.tl;
  }

  return s;
};

• Tail-recursive function that does same calculation:

	 sum-acc(nil,	s)	 :=	h(s)	 	 	 	 	 h(s)	→	s
	 sum-acc(x	::	L,	s)	 :=	my-acc(L,	g(s,	x))	 	 g(s,	x)	→	s	+	x

 sum-func(L)	 :=	my-acc(L,	f(L))		 	 	 f(L)	→	0



Example 1: Loop to Tail Recursion

const sumLoop = (R: List): bigint => {
  let s = 0;
  while (R.kind !== "nil") {
    s = s + R.hd;

    R = R.tl;
  }

  return s;
};

• Tail-recursive function that does same calculation:

	 sum-acc(nil,	s)	 :=	s
	 sum-acc(x	::	L,	s)	 :=	sum-acc(L,	s	+	x)

 sum-func(L)	 :=		sum-acc(L,	0)

{{ Inv:	sum-acc(R0,	s0)	=	sum-acc(R,	s)	}}



Example 2: Max Value in a List

const maxLoop = (R: List): bigint => {
  if (R.kind === "nil") throw …
 let s = R.hd;
 R = R.tl;

 while (R.kind !== "nil") {
    if (R.hd > s)
      s = R.hd;

    R = R.tl;
  }
  return s;
};

maxLoop(1	::	3	::	4	::	2	::	nil)

Iteration R s



Example 2: Max Value in a List

const maxLoop = (R: List): bigint => {
  if (R.kind === "nil") throw …
 let s = R.hd;
 R = R.tl;

 while (R.kind !== "nil") {
    if (R.hd > s)
      s = R.hd;

    R = R.tl;
  }
  return s;
};

maxLoop(1	::	3	::	4	::	2	::	nil)

Iteration R s

0 3	::	4	::	2	::	nil 1
1 4	::	2	::	nil 3
2 2	::	nil 4
3 nil 4



Example 2: Loop to Tail Recursion

const maxLoop = (R: List): bigint => {
  if (R.kind === "nil") throw …
  let s = R.hd;
  R = R.tl;

  while (R.kind !== "nil") {
    if (R.hd > s)
      s = R.hd;

    R = R.tl;
  }
  return s;
};

	 max-acc(nil,	s)	 :=	h(s)	 	 	 	 	 h(s)	→	s
	 max-acc(x	::	L,	s)	 :=	max-acc(L,	g(s,	x))	 	 g(s,	x)	→	x		if		x	>	s
	 	 	 	 	 	 	 	 	 	 	 	 	 s		if		x	≤	s

 max-func(L)	 :=	max-acc(L,	f(L))	 	 	 f(L)	→	L.hd		if  L	≠	nil



Example 2: Loop to Tail Recursion

const maxLoop = (R: List): bigint => {
  if (R.kind === "nil") throw …
  let s = R.hd;
  R = R.tl;
  while (R.kind !== "nil") {
    if (R.hd > s)
      s = R.hd;

    R = R.tl;
  }
  return s;
};

	 max-acc(nil,	s)	 :=	s
	 max-acc(x	::	L,	s)	 :=	max-acc(L,	x)	 	 if	x	>	s
	 max-acc(x	::	L,	s)	 :=	max-acc(L,	s)	 	 if	x	≤	s

 max-func(nil)		 :=	undefined
 max-func(x	::L)	 :=	max-acc(L,	x)

{{ Inv:	max-acc(R0,	s0)	=	max-acc(R,	s)	}}



Example 2: Loop to Tail Recursion

const maxLoop = (R: List): bigint => {
  if (R.kind === "nil") throw …
  let s = R.hd;
  R = R.tl;
  while (R.kind !== "nil") {
    if (R.hd > s)
      s = R.hd;

    R = R.tl;
  }
  return s;
};

max-acc(nil,	s)	 :=	s
max-acc(x	::	L,	s)	 :=	max-acc(L,	x)	 if	x	>	s
max-acc(x	::	L,	s)	 :=	max-acc(L,	s)	 if	x	≤	s

max-func(nil)		 :=	undefined
max-func(x	::L)	 :=	max-acc(L,	x)

max-func(1	::	3	::	4	::	2	::	nil)

max-func(1	::	3	::	4	::	2	::	nil)
		=	max-acc(3	::	4	::	2	::	nil,	1)	 def of …
		=	max-acc(4	::	2	::	nil,	3)	 	 (since	3	>	1)
		=	max-acc(2	::	nil,	4)	 	 	 (since	4	>	3)
		=	max-acc(nil,	4)		 	 	 (since	2	≤	4)
		=	4



Loops vs Tail Recursion

• Tail recursion gives nicer notation for loop operation

• Loops are hard to describe with math
– math never mutates anything, so loops are not a good fit
– tail recursive notation shows loop operation in calculation block

maxLoop(1	::	3	::	4	::	2	::	nil)

Iteration R s
0 3	::	4	::	2	::	nil 1

1 4	::	2	::	nil 3

2 2	::	nil 4

3 nil 4

max-func(1	::	3	::	4	::	2	::	nil)

max-func(1	::	3	::	4	::	2	::	nil)
		=	max-acc(3	::	4	::	2	::	nil,	1)	 def of …

		=	max-acc(4	::	2	::	nil,	3)	 	 (since	3	>	1)
		=	max-acc(2	::	nil,	4)	 	 	 (since	4	>	3)
		=	max-acc(nil,	4)		 	 	 (since	2	≤	4)
		=	4



More Loops vs Tail Recursion

• Ordinary oops use less memory than
(non-tail) recursion

• This is a tradeoff
– save memory at the loss of information…



Example 2: Max Value in a List

const maxLoop = (R: List): bigint => {
1 if (R.kind === "nil") throw …
2 let s = R.hd;
3 R = R.tl;

4 while (R.kind !== "nil") {
5   if (R.hd > s)
6     s = R.hd;

7   R = R.tl;
8 }
9 return s;
};

Suppose we are at line 5
with R	=	4	::	2	::	nil and s	=	3
Could have started out with…

R	=	1	::	3	::	4	::	2	::	nil
R	=	3	::	4	::	2	::	nil

R	=	0	::	1	::	3	::	3	::	1	::	1	::	1	::	0	::	4	::	2	::	nil
…

Could have been one of infinitely many lists!



Could have been one of infinitely many lists!

Example 2: Max Value in a List

const maxLoop = (R: List): bigint => {
1 if (R.kind === "nil") throw …
2 let s = R.hd;
3 R = R.tl;

4 while (R.kind !== "nil") {
5   if (R.hd > s)
6     s = R.hd;

7   R = R.tl;
8 }
9 return s;
};

Suppose we are at line 4
with R	=	4	::	2	::	nil and s	=	3

Is there a situation where knowing
how we got to a line is important?

It matters when debugging!

Loop saves memory at the cost of harder debugging.
This is why (I think) Chrome removed the optimization.



Key Takeaways

• Any loop can be translated to tail recursion
– they describe the same calculation

tail recursive version is a loop (with tail call optimization)

– tail recursive notation is also useful for analyzing the loop

• Ordinary loops are strictly less powerful than recursion
– not all recursive functions can be written as tail recursion
– many problems cannot be solved in O(1) memory

e.g., tree traversals require extra space
many (most?) list operations require extra space

• Ordinary loops save memory but are harder to debug
– information thrown away tells you how you got there



Ordinary Loops vs Tail Recursion 

Ordinary Loops   ≈   Tail Recursion (with tail-call optimization)

• Can solve exactly the same problems
– can translate any loop to tail recursion
– can translate any tail recursive function to an ordinary loop

• Translation is simple and important to understand
– do this if your recursion runs out of stack space in Chrome

• Let's look at an example…



Recall: Faster Sum

sum(nil)		 :=	0
	 sum(x	::	L)	 :=	x	+	sum(L)

	 sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Both versions are recursive and O(n) time
– second version is tail recursive

• Saw that sum-acc(S,	r)	=	sum(S)	+	r
– proved this by structural induction
– tells us that sum(S)	=	sum-acc(S,	0)



Tail Recursion to a Loop

sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Could implement sum-acc as recursively:

const sum_acc = (S: List, r: bigint): bigint => {
  if (S.kind === "nil") {
    return r;
  } else {
    return sum_acc(S.tl, S.hd + r);
  }
};

– now want to restart at the top with new values for S and r

r = S.hd + r;
S = S.tl;



Tail Recursion to a Loop

sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Could implement sum-acc as recursively:

const sum_acc = (S: List, r: bigint): bigint => {
  if (S.kind === "nil") {
    return r;
  } else {
    r = S.hd + r;

    S = S.tl;
    // go to top…
  }
};



Tail Recursion to a Loop

sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Could implement sum-acc as recursively:

const sum_acc = (S: List, r: bigint): bigint => {
  while (true) {
    if (S.kind === "nil") {
      return r;
    r = S.hd + r;

    S = S.tl;
  }

};

– looks unusual with the return inside the loop…



Tail Recursion to a Loop

sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Could implement sum-acc as recursively:

const sum_acc = (S: List, r: bigint): bigint => {
  while (S.kind !== "nil") {
    r = S.hd + r;
    S = S.tl;

  }

  return r;
};

– can be sure this is correct with Floyd Logic
but for that we need an invariant



Tail Recursion to a Loop

sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Could implement sum-acc as recursively:

const sum_acc = (S: List, r: bigint): bigint => {
  {{	Inv:	sum-acc(S0,	r0)	=	sum-acc(S,	r)	}}
  while (S.kind !== "nil") {
    r = S.hd + r;

    S = S.tl;

  }
  return r;
};

– clear that the invariant holds initially



Tail Recursion to a Loop

sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Could implement sum-acc as recursively:

const sum_acc = (S: List, r: bigint): bigint => {
  {{	Inv:	sum-acc(S0,	r0)	=	sum-acc(S,	r)	}}
  while (S.kind !== "nil") {
    r = S.hd + r;

    S = S.tl;

  }
  {{	sum-acc(S0,	r0)	=	sum-acc(S,	r)	and	S	=	nil	}}
  {{	sum-acc(S0,	r0)	=	r	}}
  return r;
};

sum-acc(S0,	r0)
		=	sum-acc(S,	r)
		=	sum-acc(nil,	r)		 since S	=	nil
		=	r		 	 	 	 def of sum-acc



Tail Recursion to a Loop

sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Could implement sum-acc as recursively:

const sum_acc = (S: List, r: bigint): bigint => {
  {{	Inv:	sum-acc(S0,	r0)	=	sum-acc(S,	r)	}}
  while (S.kind !== "nil") {
    {{	sum-acc(S0,	r0)	=	sum-acc(S,	r)	and	S	=	S.hd	::	S.tl	}}
    r = S.hd + r;

    S = S.tl;
    {{	sum-acc(S0,	r0)	=	sum-acc(S,	r)	}}
  }
  return r;
};



Tail Recursion to a Loop

sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Could implement sum-acc as recursively:

const sum_acc = (S: List, r: bigint): bigint => {
  {{	Inv:	sum-acc(S0,	r0)	=	sum-acc(S,	r)	}}
  while (S.kind !== "nil") {
    {{	sum-acc(S0,	r0)	=	sum-acc(S,	r)	and	S	=	S.hd	::	S.tl	}}
    {{	sum-acc(S0,	r0)	=	sum-acc(S.tl,	S.hd	+	r)	}}
    r = S.hd + r;
    S = S.tl;

    {{	sum-acc(S0,	r0)	=	sum-acc(S,	r)	}}
  }

  return r;
};



Tail Recursion to a Loop

sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Could implement sum-acc as recursively:

const sum_acc = (S: List, r: bigint): bigint => {
  {{	Inv:	sum-acc(S0,	r0)	=	sum-acc(S,	r)	}}
  while (S.kind !== "nil") {
    {{	sum-acc(S0,	r0)	=	sum-acc(S,	r)	and	S	=	S.hd	::	S.tl	}}
    {{	sum-acc(S0,	r0)	=	sum-acc(S.tl,	S.hd	+	r)	}}
    r = S.hd + r;
    S = S.tl;

  }
  return r;
};

sum-acc(S0,	r0)
		=	sum-acc(S,	r)
		=	sum-acc(S.hd	::	S.tl,	r)	 since S	=	S.hd	::	S.tl
		=	sum-acc(S.tl,	S.hd	+	r)	 def of sum-acc



Tail Recursion to a Loop

sum-acc(nil,	r)		 :=	r
	 sum-acc(x	::	L,	r)	 :=	sum-acc(L,	x	+	r)

• Two types of rules in the definition
– base case: calculate an answer from the argument
– recursive case: recurses with new arguments

tail recursion requires that we return whatever that call returns



Tail Recursion to a Loop

f(…	p1	...,	r)	 :=	…
…

f(…	pn	...,	r)	 :=	…

f(…	q1	...,	r)	 :=	f(…)
…

f(…	qn	...,	r)	 :=	f(…)

• Tail-recursive function becomes a loop:

// Inv: f(args0) = f(args)
while (args /* match some q pattern */) {
  args = /* right-side of appropriate q pattern */;
}

return /* right-side of appropriate p pattern */;

base cases

recursive cases



Rewriting the Invariant

// Inv: sum-acc(S0, r0) = sum-acc(S, r)
  while (S.kind !== "nil") {
    r = S.hd + r;
    S = S.tl;

  }
  return r;

• This is the most direct invariant
– says answer with current arguments is the original answer

• Can be rewritten to not mention sum-acc at all
– use the relationship we proved between sum-acc and sum



Rewriting the Invariant

  // Inv: sum-acc(S0, r0) = sum-acc(S, r)

• Can be rewritten using sum-acc(S,	r)	=	sum(S)	+	r

  // Inv: sum(S0) + r0 = sum(S) + r

• Can use the fact that we know the initial value of r

  let r = 0;
  // Inv: sum(S0) = sum(S) + r



Rewriting the Invariant

sum(nil)		 :=	0
	 sum(x	::	L)	 :=	x	+	sum(L)

• Final version of the loop:

  let r = 0;
  // Inv: sum(S0) = sum(S) + r
  while (S.kind !== "nil") {
    r = S.hd + r;
    S = S.tl;

  }
  return r;

• Erased all evidence of our tail recursive version ;)
– will practice this on the homework



Last Element

last(nil)	 	 	 :=	undefined
	 last(x	::	nil)	 	 :=	x

	 last(x	::	y	::	L)		 :=	last(y	::	L)

• Returns the last element of the list
– only defined if the list is non-empty

otherwise, there is no last element

• This is already tail recursive
– so we can translate it into a loop…



Last Element

last(nil)	 	 	 :=	undefined
	 last(x	::	nil)	 	 :=	x

	 last(x	::	y	::	L)		 :=	last(y	::	L)

• Translate to a loop:

// @param S a non-empty list
const last = (S: List) => bigint {
  // Inv: f(args0) = f(args)
  while (args /* match some recursive pattern */) {
    args = /* right-side of recursive pattern */;
  }

  return /* right-side of base case pattern */;
};



Last Element

last(nil)	 	 	 :=	undefined
	 last(x	::	nil)	 	 :=	x

	 last(x	::	y	::	L)		 :=	last(y	::	L)

• Translate to a loop:

// @param S a non-empty list
const last = (S: List) => bigint {
  // Inv: last(S0) = last(S)
  while (args /* match some recursive pattern */) {
    args = /* right-side of recursive pattern */;
  }

  return /* right-side of base case pattern */;
};

recursive case



Last Element

last(nil)	 	 	 :=	undefined
	 last(x	::	nil)	 	 :=	x

	 last(x	::	y	::	L)		 :=	last(y	::	L)

• Translate to a loop:

// @param S a non-empty list
const last = (S: List) => bigint {
  // Inv: last(S0) = last(S)
  while (S.kind !== "nil" && S.tl.kind !== "nil") {
    S = S.tl;
  }

  return /* right-side of base case pattern */;
};

recursive case

base cases



Last Element

last(nil)	 	 	 :=	undefined
	 last(x	::	nil)	 	 :=	x

	 last(x	::	y	::	L)		 :=	last(y	::	L)

• Translate to a loop:

// @param S a non-empty list
const last = (S: List) => bigint {
  // Inv: last(S0) = last(S)
  while (S.kind !== "nil" && S.tl.kind !== "nil") {
    S = S.tl;
  }

  if (S.kind === "nil")
    throw new Error("no last element!");
  return S.hd;
};

recursive case

base cases



Last Element

last(nil)	 	 	 :=	undefined
	 last(x	::	nil)	 	 :=	x

	 last(x	::	y	::	L)		 :=	last(y	::	L)

• Mechanically becomes the following loop:

// @param S a non-empty list
const last = (S: List) => bigint {
  // Inv: last(S0) = last(S)
  while (S.kind !== "nil" && S.tl.kind !== "nil") {
    S = S.tl;
  }

  if (S.kind === "nil")
    throw new Error("no last element!");
  return S.hd;
};

recursive case

base cases



Definition of List Reversal

• Look at some examples…

L	 	 	 	 	 	 	 rev(L)
nil	 	 	 	 	 	 	 nil
3	::	nil	 	 	 	 	 	 3	::	nil
2	::	3	::	nil	 	 	 	 	 3	::	2	::	nil
1	::	2	::	3	::	nil	 	 	 	 	 3	::	2	::	1	::	nil

• Where does rev([2,	3]) show up in rev([1,	2,	3])?
– at the beginning, with 1	::	nil after it

• Where does rev([3]) show up in rev([2,	3])?
– at the beginning, with 2	::	nil after it



Reversing a List

• Mathematical definition of rev(S)

	 	rev(nil)  :=		nil	 	 	 	 	
	 	rev(x	::	L)	 :=		rev(L)	⧺	[x]

– note that rev uses concat (⧺) as a helper function

1 2 3

move 1 to end

reverse this too



Reversing a List (Slowly)

rev(nil)	 	 :=	nil
	 rev(x	::	L)	 :=	rev(L)	⧺	[x]

• This correctly reverses a list but is slow
– concat takes ϴ(n) time, where n is length of L
– n calls to concat takes ϴ(n2) time

• Can we do this faster?
– yes, but we need a helper function



Reversing a List Quickly

• Helper function rev-acc(S,	R) for any S,	R	:	List

	 rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)	
	 	 	 	 	

2 3 nil1 nil( ),rev-acc



Reversing a List Quickly

• Helper function rev-acc(S,	R) for any S,	R	:	List

	 rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)	
	 	 	 	 	

2 3 nil1 nil( ),rev-acc

=	rev-acc 2 3 nil 1 nil( ),



Reversing a List Quickly

• Helper function rev-acc(S,	R) for any S,	R	:	List

	 rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)	
	 	 	 	 	

2 3 nil1 nil( ),rev-acc

=	rev-acc 2 3 nil 1 nil( ),

=	rev-acc 23 nil 1 nil( ),



Reversing a List Quickly

• Helper function rev-acc(S,	R) for any S,	R	:	List

	 rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)	
	 	 	 	 	

2 3 nil1 nil( ),rev-acc

=	rev-acc 2 3 nil 1 nil( ),

=	rev-acc 23 nil 1 nil( ),

=	rev-acc 23nil 1 nil( ),



Reversing a List Quickly

rev(nil)	 	 :=	nil
	 rev(x	::	L)	 :=	rev(L)	⧺	[x]

	 rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• To show the relationship between rev and rev-acc,
we need a few properties of concat (⧺):

	 A	⧺	[]	=	A	 	 	 	 	 	 	 Identity
	 A	⧺	(B	⧺	C)	=	(A	⧺	B)	⧺	C	 	 	 	 Associativity

– both are familiar properties for numbers and strings
– these say the same facts hold for lists with "⧺"

these and other properties of ⧺ are mentioned in the notes on lists



Reversing a List Quickly

rev(nil)	 	 :=	nil
	 rev(x	::	L)	 :=	rev(L)	⧺	[x]

	 rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• The general relationship between the two is this:

	 rev-acc(S,	R)	=	rev(S)	⧺	R	 	 	 	 Lemma

– same issue arose with sum-acc
there	we	had:	 	sum-acc(S,	r)	=	sum(S)	+	r

– need to explain the role of the "accumulator variable" also



Reversing a List Quickly

rev(nil)	 	 :=	nil
	 rev(x	::	L)	 :=	rev(L)	⧺	[x]

	 rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• The general relationship between the two is this:

	 rev-acc(S,	R)	=	rev(S)	⧺	R	 	 	 	 Lemma

• This shows us that rev(S)	=	rev-acc(S,	[])

	 	 rev-acc(S,	[])	 =	rev(S)	⧺	[]	 	 	 	 Lemma
	 	 	 	 	 =	rev(S)



Helper Lemma

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Prove that rev-acc(S,	R)	=	rev(S)	⧺	R
– prove by induction on S	(so R remains a variable)

Base Case (nil):

	 rev-acc(nil,	R)	 =
	 	 	 	 	

	 	 	 	 	 =	concat(rev(nil),	R)	 	 	

concat(nil,	R)	 :=		R
							concat(x	::	L,	R)	 :=		x	::	concat(L,	R)

												rev(nil)	 :=		nil
	 								rev(x	::	L)	 :=	rev(L)	⧺	[x]



Helper Lemma

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Prove that rev-acc(S,	R)	=	rev(S)	⧺	R
– prove by induction on S	(so R remains a variable)

Base Case (nil):

	 rev-acc(nil,	R)	 =	R	 	 	 	 	 	 	 def of rev-acc
	 	 	 	 	 =	concat(nil,	R)	 	 	 	 def of concat
	 	 	 	 	 =	concat(rev(nil),	R)	 	 	 def of rev

concat(nil,	R)	 :=		R
							concat(x	::	L,	R)	 :=		x	::	concat(L,	R)

												rev(nil)	 :=		nil
	 								rev(x	::	L)	 :=	rev(L)	⧺	[x]



Helper Lemma

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Prove that rev-acc(S,	R)	=	rev(S)	⧺	R
Inductive Hypothesis: assume that rev-acc(L,	R)	=	rev(L)	⧺	R	for any	R

Inductive Step (x	::	L):

rev-acc(x	::	L,	R)	 =
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 =	rev(x	::	L)	⧺	R

concat(nil,	R)	 :=		R
							concat(x	::	L,	R)	 :=		x	::	concat(L,	R)

												rev(nil)	 :=		nil
	 								rev(x	::	L)	 :=	rev(L)	⧺	[x]



Helper Lemma

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Prove that rev-acc(S,	R)	=	rev(S)	⧺	R
Inductive Hypothesis: assume that rev-acc(L,	R)	=	rev(L)	⧺	R	for any	R

Inductive Step (x	::	L):

rev-acc(x	::	L,	R)	 	 =	rev-acc(L,	x	::	R)		 	 	 def of concat
	 	 	 	 	 =	rev(L)	⧺	(x	::	R)		 	 	 Ind. Hyp.
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 =	(rev(L)	⧺	[x])	⧺	R	 	 	 ??
	 	 	 	 	 =	rev(x	::	L)	⧺	R	 	 	 	 def of rev

concat(nil,	R)	 :=		R
							concat(x	::	L,	R)	 :=		x	::	concat(L,	R)

												rev(nil)	 :=		nil
	 								rev(x	::	L)	 :=	rev(L)	⧺	[x]



Helper Lemma

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Prove that rev-acc(S,	R)	=	rev(S)	⧺	R
Inductive Hypothesis: assume that rev-acc(L,	R)	=	rev(L)	⧺	R	for any	R

Inductive Step (x	::	L):

rev-acc(x	::	L,	R)	 	 =	rev-acc(L,	x	::	R)		 	 	 def of concat
	 	 	 	 	 =	rev(L)	⧺	(x	::	R)		 	 	 Ind. Hyp.
	 	 	 	 	
	 	 	 	 	 =	rev(L)	⧺	([x]	⧺	R)	 	 	 ??	 	 	 	 	
	 	 	 	 	 =	(rev(L)	⧺	[x])	⧺	R
	 	 	 	 	 =	rev(x	::	L)	⧺	R	 	 	 	 def of rev

concat(nil,	R)	 :=		R
							concat(x	::	L,	R)	 :=		x	::	concat(L,	R)

												rev(nil)	 :=		nil
	 								rev(x	::	L)	 :=	rev(L)	⧺	[x]



Helper Lemma

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Prove that rev-acc(S,	R)	=	rev(S)	⧺	R
Inductive Hypothesis: assume that rev-acc(L,	R)	=	rev(L)	⧺	R	for any	R

Inductive Step (x	::	L):

rev-acc(x	::	L,	R)	 	 =	rev-acc(L,	x	::	R)		 	 	 def of concat
	 	 	 	 	 =	rev(L)	⧺	(x	::	R)		 	 	 Ind. Hyp.
	 	 	 	 	
	 	 	 	 	 =	rev(L)	⧺	concat(x	::	nil,	R)	 ??
	 	 	 	 	 =	rev(L)	⧺	([x]	⧺	R)
	 	 	 	 	 =	(rev(L)	⧺	[x])	⧺	R
	 	 	 	 	 =	rev(x	::	L)	⧺	R	 	 	 	 def of rev

concat(nil,	R)	 :=		R
							concat(x	::	L,	R)	 :=		x	::	concat(L,	R)

												rev(nil)	 :=		nil
	 								rev(x	::	L)	 :=	rev(L)	⧺	[x]



Helper Lemma

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Prove that rev-acc(S,	R)	=	rev(S)	⧺	R
Inductive Hypothesis: assume that rev-acc(L,	R)	=	rev(L)	⧺	R	for any	R

Inductive Step (x	::	L):

rev-acc(x	::	L,	R)	 	 =	rev-acc(L,	x	::	R)		 	 	 def of concat
	 	 	 	 	 =	rev(L)	⧺	(x	::	R)		 	 	 Ind. Hyp.
	 	 	 	 	 =	rev(L)	⧺	concat(nil,	x	::	R)	  def of concat
	 	 	 	 	 =	rev(L)	⧺	concat(x	::	nil,	R) def of concat
	 	 	 	 	 =	rev(L)	⧺	([x]	⧺	R)
	 	 	 	 	 =	(rev(L)	⧺	[x])	⧺	R
	 	 	 	 	 =	rev(x	::	L)	⧺	R	 	 	 	 def of rev

concat(nil,	R)	 :=		R
							concat(x	::	L,	R)	 :=		x	::	concat(L,	R)

												rev(nil)	 :=		nil
	 								rev(x	::	L)	 :=	rev(L)	⧺	[x]



Recall: Tail Recursion to a Loop

f(…	p1	...,	r)	 :=	…
…

f(…	pn	...,	r)	 :=	…

f(…	q1	...,	r)	 :=	f(…)
…

f(…	qn	...,	r)	 :=	f(…)

• Tail-recursive function becomes a loop:

// Inv: f(args0) = f(args)
while (args /* match some q pattern */) {
  args = /* right-side of appropriate q pattern */;
}

return /* right-side of appropriate p pattern */;

base cases

recursive cases



Loop Version of rev-acc

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Tail-recursive function becomes a loop:

  // Inv: rev-acc(S0, R0) = rev-acc(S, R)
  while (S.kind !== "nil") {
    R = cons(S.hd, R);
    S = S.tl;

  }

  return R;

• Now, use this to calculate rev(S)	=	rev-acc(S,	nil)



Loop Version of rev-acc

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Calculate rev(S) with loop:

const rev = (S: List): List => {
  let R = nil;
  // Inv: rev-acc(S0, R0) = rev-acc(S, R)
  while (S.kind !== "nil") {
    R = cons(S.hd, R);

    S = S.tl;
  }

  return R;
}

Invariant still mentions rev-acc

Destroy the evidence!

rev-acc(S,	R)	=	rev(S)	⧺	R



Loop Version of rev-acc

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Calculate rev(S) with loop:

const rev = (S: List): List => {
  let R = nil;
  // Inv: rev(S0) ++ R0 = rev(S) ++ R
  while (S.kind !== "nil") {
    R = cons(S.hd, R);

    R = R.tl;
  }

  return R;
}

We know  R0	=	[]

And  rev(S)	⧺	[]	=	rev(S)



Loop Version of rev-acc

rev-acc(nil,	R)	 :=		R
	 rev-acc(x	::	L,	R)	 :=		rev-acc(L,	x	::	R)

• Calculate rev(S) with loop:

const rev = (S: List): List => {
  let R = nil;
  // Inv: rev(S0) = rev(S) ++ R
  while (S.kind !== "nil") {
    R = cons(S.hd, R);

    R = R.tl;
  }

  return R;
}



More On Loops vs Recursion

• Ordinary loops are a special case of recursion
– recursion is more powerful
– recursion is necessary in many cases (e.g., tree traversals)

even most list functions require extra space

• A lot more that could be said…
– why did sum-acc and rev-acc work?

both use associative operations: + and ⧺

– many other cases where loops can be used
functions defined on natural numbers
functions defined purely "bottom up" on lists



"Bottom Up" Functions on Lists

twice(nil)	 :=		nil
	 twice(x	::	L)	 :=		(2x)	::	twice(L)

• The opposite of "tail recursion" is purely "bottom up"
– tail recursion does the work "top down"

all the work is done as we move down the list

– this definition is "bottom up"
all the work is done as we work back from nil to the full list



"Bottom Up" Functions on Lists

twice(nil)	 :=		nil
	 twice(x	::	L)	 :=		(2x)	::	twice(L)

• Attempt to do this with an accumulator

	 twice-acc(nil,	R)	 		:=	R
	 twice-acc(x	::	L,	R)			:=	twice-acc(L,	(2x)	::	R)

– this could be implemented with a loop
– but it's incorrect…



"Bottom Up" Functions on Lists

twice(nil)	 :=		nil
	 twice(x	::	L)	 :=		(2x)	::	twice(L)

• Attempt to do this with an accumulator

	 twice-acc(nil,	R)	 		:=	R
	 twice-acc(x	::	L,	R)			:=	twice-acc(L,	(2x)	::	R)

	 twice(1	::	2	::	3	::	nil)
	 		=	2	::	twice(2	::	3	::	nil)	 	 	 def of twice
	 		=	2	::	4	::	twice(3	::	nil)	 	 	 def of twice
	 		=	2	::	4	::	6	::	twice(nil)	 	 	 def of twice
	 		=	2	::	4	::	6	::	nil	 	 	 	 	 def of twice



"Bottom Up" Functions on Lists

twice(nil)	 :=		nil
	 twice(x	::	L)	 :=		(2x)	::	twice(L)

• Attempt to do this with an accumulator

	 twice-acc(nil,	R)	 		:=	R
	 twice-acc(x	::	L,	R)			:=	twice-acc(L,	(2x)	::	R)

	 twice(1	::	2	::	3	::	nil)	=	…	2	::	4	::	6	::	nil

	 twice-acc(1	::	2	::	3	::	nil,	nil)
	 		=	twice-acc(2	::	3	::	nil,	2	::	nil)	 	 	 def of twice-acc
	 		=	twice-acc(3	::	nil,	4	::	2	::	nil)	 	 	 def of twice-acc
	 		=	twice-acc(nil,	6	::	4	::	2	::	nil)	 	 	 def of twice-acc
	 		=	6	::	4	::	2	::	nil	 	 	 	 	 	 def of twice-acc



"Bottom Up" Functions on Lists

twice(nil)	 :=		nil
	 twice(x	::	L)	 :=		(2x)	::	twice(L)

• Attempt to do this with an accumulator

	 twice-acc(nil,	R)	 		:=	R
	 twice-acc(x	::	L,	R)			:=	twice-acc(L,	(2x)	::	R)

– we end up with twice-acc(L,	nil)	=	rev(twice(L))
– we can fix this by reversing the result when we're done

we return rev(twice-acc(L,	nil))
– this lets us use a loop but it's not O(1) memory



More On Loops vs Recursion

• Ordinary loops are a special case of recursion
– recursion is more powerful
– recursion is necessary in many cases (e.g., tree traversals)

even most list functions require extra space

• A lot more that could be said…
– why did sum-acc and rev-acc work?

both use associative operations: + and ⧺

– many other cases where loops can be used
functions defined on natural numbers
functions defined purely "bottom up" on lists

– but we're out of time


