
Reasoning

Kevin Zatloukal

CSE 331

Summary of HW3

• Number of bugs logged:

– average of 3.9 bugs per person

• Average solution was 136 lines of code (over-estimate)

– 1 bug every 35 lines of code

– 1 bug per 20–70 is normal even for professionals

Summary of HW3

• Time spent per bug:

– average of 65 minutes per bug

– 34% more than 1 hour

– clearly a long tail to this distribution

some bugs take a very long time to find

Summary of HW3

• How many functions were searched

– 60% of bugs searched more than one function

– time require for debugging

 1-2 functions 48 mins

 3-4 functions 96 mins

 5-6 functions 151 min

– on average, every extra function meant 30 more mins

• Shrinking the search space helps a lot

– defensive programming

– unit tests

– run-time type checking of request/responses

wrong types guarantees the failure is in a different function

Software Development Process

Software Development Process

Idea Generation

Given: a problem description (in English)

Type Checking

Debugging Beta Users

All Users

Beta users are understanding about failures,

Regular users are completely unforgiving!

(Regular users do not give credit for effort.)

Testing

How Much Debugging?

• Bugs typed in… 1 per 20 lines

– we saw 11 lines in HW1

– should get to 20 lines when more familiar with setting

• Bugs after type checking… 1 per 40 lines

– assume 50% caught by type checker (saw 41% in HW1)

– matches industry estimates of 20-70 lines per bug

• Bugs after unit testing… 1 per 133 lines

– assume 70% caught by unit testing

optimistic: studies find about <70% are caught by unit testing

– remaining bugs are sent to beta testers

How Much Debugging?

• Bugs after testing… 1 per 133 lines

– assume 70% caught by testing

– studies find about 65% are caught by testing

• Are rest are caught by beta users?

– not enough of them

– millions of users will find all bugs

• Bugs after beta users… 1 per 2000 lines

– number from Microsoft

– anything created by humans has mistakes

only a small number of users give 0 stars

Beta Users

All Users

Testing

How Many Bugs Sent to Beta Users?

• Every 2000 lines of code

100 bugs typed in 1 per 20 lines

 – 50 bugs caught by type checker (50%)

 = 50 bugs

 – 35 bugs caught by unit testing (70%)

 = 15 bugs

• Need to debug 14 bugs from beta users

– will still send 1 bug to regular users

What Kind of Bugs Sent to Beta Users?

• Comes back without steps to reproduce the failure

– only comes back with a description of the failure

maybe a vague (possibly incorrect) description of steps

• Only sent to beta users if it…

– type checks

– gets past unit tests

• Most such bugs are at the seams between functions

– multiple functions need to be debugged

– will take a long time to track down (many hours)

we saw an extra 30 minutes for every additional function in HW3

HW3 had 700 lines… industry programs will be 100,000 minimum

Productivity Estimate

• 2000 lines of code

– assume a familiar setting (know how to solve problems)

– let "h" be the number of hours to debug one such bug

5 hours typing & fixing type errors

5 hours testing & fixing unit test failures

14h hours debugging & fixing bugs

What Else Can We Do?

• 2000 lines of code

– assume a familiar setting (know how to solve problems)

– let "h" be the number of hours to debug one such bug

5 hours typing & fixing type errors

5 hours ?? removes 11 bugs ??

5 hours testing & fixing unit test failures

3h hours debugging & fixing bugs

even at h=5, debugging

not the majority of time

bottom programmer is

2-3 times more productive

How Much Room For Improvement?

• Suppose we could…

– remove all 14 bugs by the end of unit testing

– in the same amount of time

plausible since fixing unit test failures involves debugging

5 hours typing & fixing type errors

3 hours ?? removes 14 bugs ??

2 hours testing & fixing unit test failures

would cut 90% of time spent

would be 10x more productive

"10x developer" possible in a setting

where debugging is hard but can be

avoided with extra effort

“Engineers are paid to think and understand.”

— Class slogan #1

Standard Techniques for Correctness

Standard practice (60+ years) uses three techniques:

• Tools: type checker, libraries, etc.

• Testing: try it on a well-chosen set of examples

• Reasoning: think through your code carefully

– convince yourself it works correctly on all inputs

– have another person do the same (“code review”)

Comparing These Techniques

• Differ along some key dimensions

– does it consider all allowed inputs

– does it make sure the answer is fully correct ("=")

• Combination removes >97% of bugs

– each tends to find different kinds of errors

– e.g., type checker is good at typos & reasoning is not

humans often skip right over typos when reading

Technique All Inputs Fully Correct

Type Checker ✓

Testing ✓

Reasoning ✓ ✓

Review: Software Development Process

Idea Generation

Given: a problem description (in English)

Type Checking Reasoning Testing

Debugging Beta Users

All Users

Only send to beta users bugs that get past

type checking, reasoning, & testing

Brian Kernighan

“Debugging is twice as hard as
writing the code in the first place.”

Reasoning is Expected

• In industry: you will be expected to think through your code

– standard practice is to do this twice (“code review”)

you think through your code then ask someone else to also

• Professionals spend most of their coding time reasoning

– reasoning is the core skill of programming

• Interviews are tests of reasoning

– take the computer away so you only have reasoning

– typical coding problem has lots of cases that are easy to miss

if you don’t think through carefully

– (not about knowing “the answer” to the question

interviewers will throw out interviews that went too well!)

Unlikely to be Automated

• Reasoning & debugging are provably impossible for a

computer to solve in all cases

• Current LLM error rates are much higher than humans

– requires a human to do a lot of debugging

starts with reading and understanding all the generated code…

probably easier to rewrite it yourself

– studies show far show little / no productivity improvement so far

if it reads your mind, it saves you typing, but that's not the limiting factor

if it doesn't read your mind, you must still spend time understanding it

• AI is especially bad at reasoning

– e.g., bad at learning formal properties

– e.g., bad at catching rare cases

“These models have read every piece of code on Github,

every StackOverflow question answer, every programming

book, every tweet about coding, transcripts of every

YouTube walkthrough and they still can’t code as well as I

can in every situation.”

— Nat Friedman (former GitHub CEO)

Reasoning

• “Thinking through” what the code does on all inputs

– neither testing nor type checking can do this

• Can be done formally or informally

– most professionals reason informally

– we will start with formal reasoning and move to informal

formal reasoning is a steppingstone to informal reasoning (same core ideas)

formal reasoning still needed for the hardest problems

Correct Requires a Specification

Specification contains two sets of facts

 Precondition:
facts we are promised about the inputs

 Postcondition:
facts we are required to ensure for the output

 Correctness (satisfying the spec):
for every input satisfying the precondition,

the output will satisfy the postcondition

Specifications in TypeScript

• TypeScript, like Java, writes specs in /** … */

/**

 * High level description of what function does

 * @param a What “a” represents + any conditions

 * @param b What “b” represents + any conditions

 * @returns Detailed description of return value

 */

const f = (a: bigint, b: bigint): bigint => {..};

– these are formatted as “JSDoc” comments

– (in Java, they are JavaDoc comments)

Specifications in TypeScript

• Specifications are written in the comments

/**

 * Returns the first n elements from the list L

 * @param n non-negative length of the prefix

 * @param L the list whose prefix should be returned

 * @requires n <= len(L)

 * @returns list S such that L = S ++ T for some T

 */

const prefix = (n: bigint, L: List): List => {..};

– precondition written in @param and @requires

– postcondition written in @returns

Reasoning

Reasoning

• “Thinking through” what the code does on all inputs

– neither testing nor type checking can do this

• Can be done formally or informally

– most professionals reason informally

– we will start with formal reasoning and move to informal

formal reasoning is a steppingstone to informal reasoning (same core ideas)

formal reasoning still needed for the hardest problems

• Definition of correctness comes from the

specification…

Recall: Specification

Specification contains two sets of facts

 Precondition:
facts we are promised about the inputs

 Postcondition:
facts we are required to ensure for the output

 Correctness (satisfying the spec):
for every input satisfying the precondition,

the output will satisfy the postcondition

Facts

• Basic inputs to reasoning are “facts”

– things we know to be true about the variables

these hold for all inputs (no matter what value the variable has)

– typically, “=” or “≤”

// @param n a natural number

const f = (n: bigint): bigint => {

 const m = 2n * n;

 return (m + 1n) * (m – 1n);

};

• At the return statement, we know these facts:

– n ∈ ℕ (or n ∈ ℤ and n ≥ 0)

– m = 2n

find facts by reading along path

from top to return statement

Facts

• Basic inputs to reasoning are “facts”

– things we know to be true about the variables

these hold for all inputs (no matter what value the variable has)

– typically, “=” or “≤”

// @param n a natural number

const f = (n: bigint): bigint => {

 const m = 2n * n;

 return (m + 1n) * (m – 1n);

};

• No need to include the fact that n is an integer (n ∈ ℤ)

– that is true, but the type checker takes care of that

– no need to repeat reasoning done by the type checker

Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 const L: List = cons(a, cons(b, nil));

 if (a >= 0n && b >= 0n)

 return sum(L);

 …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Remains to prove that “sum(L) ≥ 0”

find facts by reading along path

from top to return statement

facts are math statements about the code

Implications

• We can use the facts we know to prove more facts

– if we can prove R using facts P and Q,

we say that R “follows from” or “is implied by” P and Q

– proving this fact is proving an “implication”

• Checking correctness requires proving implications

– need to prove facts about the return values

– return values must satisfy the facts of the postcondition

Collecting Facts

• Saw how to collect facts in code consisting of

– "const" variable declarations

– "if" statements

– collect facts by reading along path from top to return

• Those elements cover all code without mutation

– covers everything describable by our math notation

– we can calculate interesting values with recursion

• Will need more tools to handle code with mutation…

Mutation Makes Reasoning Harder

Description Testing Tools Reasoning

no mutation full coverage type checker calculation
induction

local variable mutation “ “ Floyd logic

array mutation “ “ for-any facts

heap state mutation “ “ rep invariants

HW5

HW6

HW8

HW9?

Correctness with No Mutation

• Proving implications is the core step of reasoning

– other techniques output implications for us to prove

• Facts are written in our math notation

– we will use math tools to prove implications

• Core technique is "proof by calculation"

• Other techniques we will need:

– proof by cases

– structural induction

Proof by Calculation

Proof by Calculation

• Proves an implication

– fact to be shown is an equation or inequality

• Uses known facts and definitions

– latter includes, e.g., the fact that len(nil) = 0

Example Proof by Calculation

• Given x = y and z ≤ 10, prove that x + z ≤ y + 10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x + z

since x = y

= y + z ≤ y + 10

since z ≤ 10

All together, this tells us that x + z ≤ y + 10

Example Proof by Calculation

• Given x = y and z ≤ 10, prove that x + z ≤ y + 10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x + z = y + z since x = y

 ≤ y + 10 since z ≤ 10

– easier to read when split across lines

– “calculation block”, includes explanations in right column

proof by calculation means using a calculation block

– “=” or “≤” relates that line to the previous line

Calculation Blocks

• Chain of “=” shows first = last

a = b

 = c

 = d

– proves that a = d

– all 4 of these are the same number

Calculation Blocks

• Chain of “=” and “≤” shows first ≤ last

x + z = y + z since x = y

 ≤ y + 10 since z ≤ 10

 = y + 3 + 7

 ≤ w + 7 since y + 3 ≤ w

– each number is equal or strictly larger that previous

last number is strictly larger than the first number

– analogous for “≥”

Using Calculation to Prove Correctness

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 1” and “y ≥ 1”

• Correct if the return value is a positive integer

x + y

Using Calculation to Prove Correctness

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 1” and “y ≥ 1”

• Correct if the return value is a positive integer

x + y ≥ x + 1 since y ≥ 1

 ≥ 1 + 1 since x ≥ 1

 = 2

 ≥ 1

– calculation shows that x + y ≥ 1

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 9” and “y ≥ –8”

• Correct if the return value is a positive integer

x + y

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 9” and “y ≥ –8”

• Correct if the return value is a positive integer

x + y ≥ x + -8 since y ≥ -8

 ≥ 9 – 8 since x ≥ 9

 = 1

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x > 8” and “y > –9”

• Correct if the return value is a positive integer

x + y > x + -9 since y > -9

 > 8 - 9 since x > 8

 = -1

warning: avoid using “>” (or “<“) multiple times in a calculation block

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 4” and “y ≥ 5”

• Correct if the return value is 10 or larger

x + y

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 4” and “y ≥ 5”

• Correct if the return value is 10 or larger

x + y ≥ x + 5 since y ≥ 5

 ≥ 4 + 5 since x ≥ 4

 = 9

proof doesn’t work because the code is wrong!

Using Definitions in Calculations

• Most useful with function calls

– cite the definition of the function to get the return value

• For example:

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Can cite facts such as

– sum(nil) = 0

– sum(a :: b :: nil) = a + sum(b :: nil)

second case of definition with x = a and L = b :: nil

Recall: Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 const L: List = cons(a, cons(b, nil));

 if (a >= 0n && b >= 0n)

 return sum(L);

 …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Must prove that sum(L) ≥ 0

find facts by reading along path

from top to return statement

Using Definitions in Calculations

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Know “a ≥ 0”, “b ≥ 0”, and “L = a :: b :: nil”

• Prove the “sum(L)” is non-negative

sum(L)

Using Definitions in Calculations

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Know “a ≥ 0”, “b ≥ 0”, and “L = a :: b :: nil”

• Prove the “sum(L)” is non-negative

sum(L) = sum(a :: b :: nil) since L = a :: b :: nil

 = a + sum(b :: nil) def of sum

 = a + b + sum(nil) def of sum

 = a + b def of sum

 ≥ 0 + b since a ≥ 0

 ≥ 0 since b ≥ 0

Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {

 if (y < 0n) {

 return x + y;

 } else {

 return x – 1n;

 }

};

• Known fact in then (top) branch: “y ≤ -1”

x + y

Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {

 if (y < 0n) {

 return x + y;

 } else {

 return x – 1n;

 }

};

• Known fact in then (top) branch: “y ≤ -1”

x + y ≤ x + -1 since y ≤ -1

 < x + 0 since -1 < 0

 = x

Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {

 if (y < 0n) {

 return x + y;

 } else {

 return x – 1n;

 }

};

• Known fact in else (bottom) branch: “y ≥ 0”

x – 1

Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {

 if (y < 0n) {

 return x + y;

 } else {

 return x – 1n;

 }

};

• Known fact in else (bottom) branch: “y ≥ 0”

x – 1 < x + 0 since –1 < 0

 = x

Proving Correctness with Multiple Claims

• Need to check the claim from the spec at each return

• If spec claims multiple facts, then

we must prove that each of them holds

// Inputs x and y are integers with x < y - 1

// Returns a number less than y and greater than x.

const f = (x: bigint, y, bigint): bigint => { .. };

– multiple known facts: x : ℤ, y : ℤ, and x < y – 1

– multiple claims to prove: x < r and r < y
where “r” is the return value

– requires two calculation blocks

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b

const max = (a: bigint, b, bigint): bigint => {

 if (a >= b) {

 return a;

 } else {

 return b;

 }

};

• Three different facts to prove at each return

• Two known facts in each branch (return value is “r”):

– then branch: a ≥ b and r = a

– else branch: a < b and r = b

declarative spec of max

Proof By Cases

Proof By Cases

• Sometimes necessary split a proof into cases

– fact may be hard to prove for all values at once

• Example: can't prove it for all x at once,

but can prove it for x ≥ 0 and x < 0
– will see an example next

• If we can prove it in those two cases, it holds for all x
– follows since the cases are exhaustive

(don’t need to be exclusive in this case)

Example Proof By Cases

f : ℤ → ℤ

 f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Want to prove that f(m) > m

• Doesn't seem possible as is

– can't even apply the definition of f

– need to know if m < 0 or m ≥ 0

• Split our analysis into these two separate cases…

Proof By Cases

f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m) =

 > m

Proof By Cases

f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m) = 2m + 1 def of f (since m ≥ 0)

 ≥ m + 1 since m ≥ 0

 > m since 1 > 0

Proof By Cases

f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m) = … > m

Case m < 0:

 f(m) = 0 def of f (since m < 0)

 > m since m < 0

Since these two cases are exhaustive, f(m) > m holds in general.

HW4–6

• In HW1–3, you

– learned the structure of modern applications (UIs & servers)

will be useful to know for just about any programming job

– experience what happens when bugs appear as failures

lots of debugging

• In HW4–6, you

– will learn how to ensure code is correct before you run it

– experience what it is like not allow bugs to become failures

– each HW is split into written and coding

goal is to do the thinking to ensure it works the first time

(give you the opportunity to fix it up if you do make mistakes)

Recall Correctness with No Mutation

• Proving implications is the core step of reasoning

– other techniques output implications for us to prove

• Core technique is "proof by calculation"

• Other techniques we will need:

– proof by cases

– structural induction

Structural Induction

Proof by Calculation

• Our proofs so far have used fixed-length lists

– e.g., sum(a :: b :: nil) ≥ 0

• Would like to prove facts about any length list L

• For example…

Example: Repeating List Elements

• Consider the following function:

 echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Produces a list where every element is repeated twice

echo(1 :: 2 :: nil)

 = 1 :: 1 :: echo(2 :: nil) def of echo

 = 1 :: 1 :: 2 :: 2 :: echo(nil) def of echo

 = 1 :: 1 :: 2 :: 2 :: nil def of echo

Example: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Suppose we have the following code:

const m = len(S); // S is some List

const R = echo(S);

…

return 2*m; // = len(echo(S))

– spec says to return len(echo(S)) but code returns 2 len(S)

• Need to prove that len(echo(S)) = 2 len(S)

Proof by Calculation

• Our proofs so far have used fixed-length lists

– e.g., sum(a :: b :: nil) ≥ 0

• Would like to prove facts about any length list L

• Need more tools for this…

– structural recursion calculates on inductive types

– structural induction reasons about structural recursion

or more generally, to prove facts containing variables of an inductive type

– both tools are specific to inductive types

Structural Induction

Let P(S) be the claim “len(echo(S)) = 2 len(S)”

To prove P(S) holds for any list S, prove two implications

 Base Case: prove P(nil)

– use any known facts and definitions

 Inductive Step: prove P(x :: L)

– x and L are variables

– use any known facts and definitions plus one more fact…

– make use of the fact that L is also a List

Structural Induction

To prove P(S) holds for any list S, prove two implications

 Base Case: prove P(nil)

– use any known facts and definitions

 Inductive Hypothesis: assume P(L) is true

– use this in the inductive step, but not anywhere else

 Inductive Step: prove P(x :: L)

– use known facts and definitions and Inductive Hypothesis

Why This Works

With Structural Induction, we prove two facts

 P(nil) len(echo(nil)) = 2 len(nil)

 P(x :: L) len(echo(x :: L)) = 2 len(x :: L)

 (second assuming len(echo(L)) = 2 len(L))

Why is this enough to prove P(S) for any S : List?

Why This Works

Build up an object using constructors:

 nil first constructor

 2 :: nil second constructor

 1 :: 2 :: nil second constructor

1 2 nil

nil already exists when building 2 :: nil

2 :: nil already exists when building 1 :: 2 :: nil

Why This Works

Build up a proof the same way we built up the object

 P(nil) len(echo(nil)) = 2 len(nil)

 P(x :: L) len(echo(x :: L)) = 2 len(x :: L)

 (second assuming len(echo(L)) = 2 len(L))

1 2 nil

P(nil) already proven when proving P(2 :: nil)

P(2 :: nil) already proven when proving P(1 :: 2 :: nil)

P(nil)

Example: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

 Need to prove that len(echo(nil)) = 2 len(nil)

 len(echo(nil)) =

len(nil) := 0

len(x :: L) := 1 + len(L)

Example: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

 len(echo(nil)) = len(nil) def of echo

= 0 def of len

= 2 · 0
 def of len = 2 len(nil)

Example: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Step (x :: L):

 Need to prove that len(echo(x :: L)) = 2 len(x :: L)

 Get to assume claim holds for L, i.e., that len(echo(L)) = 2 len(L)

Example: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x :: L):

 len(echo(x :: L))

 = 2 len(x :: L)
len(nil) := 0

len(x :: L) := 1 + len(L)

Example: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x :: L):

 len(echo(x :: L)) = len(x :: x :: echo(L)) def of echo

 = 2 len(x :: L)

= 1 + len(x :: echo(L)) def of len

= 2 + len(echo(L)) def of len

= 2 + 2 len(L) Ind. Hyp.

= 2(1 + len(L))

def of len

Example 2: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Suppose we have the following code:

const y = sum(S); // S is some List

const R = echo(S);

…

return 2*y; // = sum(echo(S))

– spec says to return sum(echo(S)) but code returns 2 sum(S)

• Need to prove that sum(echo(S)) = 2 sum(S)

Example 2: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

 sum(echo(nil)) =

 = 2 sum(nil)

sum(nil) := 0

sum(x :: L) := x + sum(L)

Example 2: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

 sum(echo(nil)) = sum(nil) def of echo

 = 2 sum(nil)

= 0 def of sum

= 2 · 0

def of sum

Inductive Step (x :: L):

 Need to prove that sum(echo(x :: L)) = 2 sum(x :: L)
 Get to assume claim holds for L, i.e., that sum(echo(L)) = 2 sum(L)

Example 2: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x :: L):

 sum(echo(x :: L)) =

 = 2 sum(x :: L)

sum(nil) := 0

sum(x :: L) := x + sum(L)

Example 2: Repeating List Elements

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x :: L):

 sum(echo(x :: L)) = sum(x :: x :: echo(L)) def of echo

 = 2 sum(x :: L)

= x + sum(x :: echo(L)) def of sum

= 2x + sum(echo(L)) def of sum

= 2x + 2 sum(L) Ind. Hyp.

= 2(x + sum(L))

def of sum

Recall: Concatenating Two Lists

• Mathematical definition of concat(S, R)

 concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R)

• Puts all the elements of L before those of R

concat(1 :: 2 :: nil, 3 :: 4 :: nil)

important operation

abbreviated as "⧺"

= 1 :: concat(2 :: nil, 3 :: 4 :: nil) def of concat

= 1 :: 2 :: concat(nil, 3 :: 4 :: nil) def of concat

= 1 :: 2 :: 3 :: 4 :: nil def of concat

Example 3: Length of Concatenated Lists

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Suppose we have the following code:

const m = len(S); // S is some List

const n = len(R); // R is some List

…

return m + n; // = len(concat(S, R))

– spec returns len(concat(S, R)) but code returns len(S) + len(R)

• Need to prove that len(concat(S, R)) = len(S) + len(R)

important operation

abbreviated as "⧺"

Example 3: Length of Concatenated Lists

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)
– prove by induction on S

– prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

 len(concat(nil, R)) =

 = len(nil) + len(R)

Example 3: Length of Concatenated Lists

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)
– prove by induction on S

– prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

 len(concat(nil, R)) = len(R) def of concat

 = len(nil) + len(R)

= 0 + len(R)

def of len

Example 3: Length of Concatenated Lists

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Step (x :: L):

 Need to prove that

 len(concat(x :: L, R)) = len(x :: L) + len(R)

 Get to assume claim holds for L, i.e., that

 len(concat(L, R)) = len(L) + len(R)

Example 3: Length of Concatenated Lists

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (x :: L):

 len(concat(x :: L, R)) =

 = len(x :: L) + len(R)

Example 3: Length of Concatenated Lists

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (x :: L):

 len(concat(x :: L, R)) = len(x :: concat(L, R)) def of concat

 = 1 + len(concat(L, R)) def of len

 = 1 + len(L) + len(R) Ind. Hyp.

 = len(x :: L) + len(R) def of len

Comparing Reasoning vs Testing

const concat = (S: List, R: List): List => {

 if (S.kind === “nil”) {

 return R;

 } else {

 return cons(S.hd, concat(S.tl, R));

 }

};

• Testing: 3 cases

– loop coverage requires 0, 1, and many recursive calls

• Reasoning: 2 calculations

Example: Faster Sum

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Suppose we have the following code:

const s = sum_acc(S, 0); // S is some List

…

return s; // = sum(S)

– spec says to return sum(S) but code returns sum-acc(S, 0)

• Need to prove that sum-acc(S, 0) = sum(S)

– will prove, more generally, that sum-acc(S, r) = sum(S) + r

linear time

Example 4: Faster Sum

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r
– prove by induction on S

– prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

 sum-acc(nil, r) =

 = sum(nil) + r

Example 4: Faster Sum

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r
– prove by induction on S

– prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

 sum-acc(nil, r) = r def of sum-acc

 = 0 + r

 = sum(nil) + r def of sum

Example 4: Faster Sum

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Step (x :: L):

 Need to prove that

 sum-acc(x :: L, r) = sum(x :: L) + r

 Get to assume claim holds for L, i.e., that

 sum-acc(L, r) = sum(L) + r holds for any r

Example 4: Faster Sum

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x :: L):

 sum-acc(x :: L, r) =

 = sum(x :: L) +r

Example 4: Faster Sum

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x :: L):

 sum-acc(x :: L, r) = sum-acc(L, x + r) def of sum-acc

 = sum(L) + x + r Ind. Hyp.

 = x + sum(L) + r

 = sum(x :: L) +r def of sum

inductive typesstructural induction

“We go together”

	Slide 1: Reasoning
	Slide 2: Summary of HW3
	Slide 3: Summary of HW3
	Slide 4: Summary of HW3
	Slide 5: Software Development Process
	Slide 6: Software Development Process
	Slide 7: How Much Debugging?
	Slide 8: How Much Debugging?
	Slide 9: How Many Bugs Sent to Beta Users?
	Slide 10: What Kind of Bugs Sent to Beta Users?
	Slide 11: Productivity Estimate
	Slide 12: What Else Can We Do?
	Slide 13: How Much Room For Improvement?
	Slide 14: “Engineers are paid to think and understand.”
	Slide 15: Standard Techniques for Correctness
	Slide 16: Comparing These Techniques
	Slide 17: Review: Software Development Process
	Slide 18
	Slide 19: Reasoning is Expected
	Slide 20: Unlikely to be Automated
	Slide 21: “These models have read every piece of code on Github, every StackOverflow question answer, every programming book, every tweet about coding, transcripts of every YouTube walkthrough and they still can’t code as well as I can in every situation.
	Slide 22: Reasoning
	Slide 23: Correct Requires a Specification
	Slide 24: Specifications in TypeScript
	Slide 25: Specifications in TypeScript
	Slide 26: Reasoning
	Slide 27: Reasoning
	Slide 28: Recall: Specification
	Slide 29: Facts
	Slide 30: Facts
	Slide 31: Finding Facts at a Return Statement
	Slide 32: Implications
	Slide 33: Collecting Facts
	Slide 34: Mutation Makes Reasoning Harder
	Slide 35: Correctness with No Mutation
	Slide 36: Proof by Calculation
	Slide 37: Proof by Calculation
	Slide 38: Example Proof by Calculation
	Slide 39: Example Proof by Calculation
	Slide 40: Calculation Blocks
	Slide 41: Calculation Blocks
	Slide 42: Using Calculation to Prove Correctness
	Slide 43: Using Calculation to Prove Correctness
	Slide 44: Using Calculation to Prove Correctness
	Slide 45: Using Calculation to Prove Correctness
	Slide 46: Using Calculation to Prove Correctness
	Slide 47: Using Calculation to Prove Correctness
	Slide 48: Using Calculation to Prove Correctness
	Slide 49: Using Definitions in Calculations
	Slide 50: Recall: Finding Facts at a Return Statement
	Slide 51: Using Definitions in Calculations
	Slide 52: Using Definitions in Calculations
	Slide 53: Proving Correctness with Conditionals
	Slide 54: Proving Correctness with Conditionals
	Slide 55: Proving Correctness with Conditionals
	Slide 56: Proving Correctness with Conditionals
	Slide 57: Proving Correctness with Multiple Claims
	Slide 58: Example Correctness with Conditionals
	Slide 59: Proof By Cases
	Slide 60: Proof By Cases
	Slide 61: Example Proof By Cases
	Slide 62: Proof By Cases
	Slide 63: Proof By Cases
	Slide 64: Proof By Cases
	Slide 65: HW4–6
	Slide 66: Recall Correctness with No Mutation
	Slide 67: Structural Induction
	Slide 68: Proof by Calculation
	Slide 69: Example: Repeating List Elements
	Slide 70: Example: Repeating List Elements
	Slide 71: Proof by Calculation
	Slide 72: Structural Induction
	Slide 73: Structural Induction
	Slide 74: Why This Works
	Slide 75: Why This Works
	Slide 76: Why This Works
	Slide 77: Example: Repeating List Elements
	Slide 78: Example: Repeating List Elements
	Slide 79: Example: Repeating List Elements
	Slide 80: Example: Repeating List Elements
	Slide 81: Example: Repeating List Elements
	Slide 82: Example 2: Repeating List Elements
	Slide 83: Example 2: Repeating List Elements
	Slide 84: Example 2: Repeating List Elements
	Slide 85: Example 2: Repeating List Elements
	Slide 86: Example 2: Repeating List Elements
	Slide 87: Recall: Concatenating Two Lists
	Slide 88: Example 3: Length of Concatenated Lists
	Slide 89: Example 3: Length of Concatenated Lists
	Slide 90: Example 3: Length of Concatenated Lists
	Slide 91: Example 3: Length of Concatenated Lists
	Slide 92: Example 3: Length of Concatenated Lists
	Slide 93: Example 3: Length of Concatenated Lists
	Slide 94: Comparing Reasoning vs Testing
	Slide 95: Example: Faster Sum
	Slide 96: Example 4: Faster Sum
	Slide 97: Example 4: Faster Sum
	Slide 98: Example 4: Faster Sum
	Slide 99: Example 4: Faster Sum
	Slide 100: Example 4: Faster Sum
	Slide 101

