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Summary of HW3

 Number of bugs logged:
— average of 3.9 bugs per person

Bugs Per Person

30
25
20
15

10

* Average solution was 136 lines of code  (over-estimate)
— 1 bug every 35 lines of code
— 1 bug per 20-70 is normal even for professionals



Summary of HW3

* Time spent per bug:
— average of 65 minutes per bug
— 34% more than 1 hour

Min Per Bug

12

10

— clearly a long tail to this distribution
some bugs take a very long time to find

60

70



Summary of HW3

* How many functions were searched
— 60% of bugs searched more than one function
— time require for debugging

1-2 functions 48 mins
3-4 functions 96 mins
5-6 functions 151 min

— oh average, every extra function meant 30 more mins

* Shrinking the search space helps a lot
— defensive programming
— uhit tests

— run-time type checking of request/responses
wrong types guarantees the failure is in a different function



Software Development Process



Software Development Process

Given: a problem description (in English)

[Idea GenerationJ [ Type Checking J Testing J

[ Debugging J_ Beta Users J

Beta users are understanding about failures,

Regular users are completely unforgiving! [ All Users J
(Regular users do not give credit for effort.)




How Much Debugging?

 Bugs typed in... 1 per 20 lines
— we saw 11 lines in HW1
— should get to 20 lines when more familiar with setting

* Bugs after type checking... 1 per 40 lines
— assume 50% caught by type checker (saw 41% in HW1)
— matches industry estimates of 20-70 lines per bug

* Bugs after unit testing... 1 per 133 lines

— assume 70% caught by unit testing
optimistic: studies find about <70% are caught by unit testing

— remaining bugs are sent to beta testers



How Much Debugging?

* Bugs after testing... 1 per 133 lines

— assume 70% caught by testing [ Testing J
— studies find about 65% are caught by testing

* Are rest are caught by beta users?

— not enough of them [ Beta Users J
— millions of users will find all bugs

— number from Microsoft

* Bugs after beta users... 1 per 2000 lines [
All Users J

— anything created by humans has mistakes
only a small number of users give 0 stars



How Many Bugs Sent to Beta Users?

* Every 2000 lines of code

100 bugs typed in 1 per 20 lines
— 50 bugs caught by type checker (50%)
= 50 bugs
— 35 bugs caught by unit testing (70%)
=15 bugs

* Need to debug 14 bugs from beta users
— will still send 1 bug to regular users



What Kind of Bugs Sent to Beta Users?

« Comes back without steps to reproduce the failure

— only comes back with a description of the failure
maybe a vague (possibly incorrect) description of steps

* Only sent to beta users if it...
— type checks
— gets past unit tests

* Most such bugs are at the seams between functions
— multiple functions need to be debugged

— will take a long time to track down (many hours)
we saw an extra 30 minutes for every additional function in HW3
HW3 had 700 lines... industry programs will be 100,000 minimum



Productivity Estimate

e 2000 lines of code

— assume a familiar setting (know how to solve problems)
— let "h" be the number of hours to debug one such bug

5 hours typing & fixing type errors
5 hours testing & fixing unit test failures
14h hours debugging & fixing bugs

Time Spent Debugging

95%
90%
85%
80%
75%

70%



What Else Can We Do?

e 2000 lines of code

— assume a familiar setting (know how to solve problems)
— let "h" be the number of hours to debug one such bug

5 hours typing & fixing type errors

5 hours ?? removes 11 bugs ??

5 hours testing & fixing unit test failures
3h hours debugging & fixing bugs

Time Spent Debugging
100%

80% ._’*___.,_.———o——o—-* even at h=5, debugging

60% not the majority of time

o /.,——o—f"“”*'—'_' bottom programmer is

20% 2-3 times more productive

0%
2 2.5 3 3.5 4 4.5 5



How Much Room For Improvement?

 Suppose we could...
— remove all 14 bugs by the end of unit testing
— in the same amount of time

95%
90%
85%
80%
75%

70%

plausible since fixing unit test failures involves debugging

5 hours typing & fixing type errors

3 hours ?? removes 14 bugs ??

2 hours testing & fixing unit test failures
Time Spent Debugging

would cut 90% of time spent

-9
would be 10x more productive
"10x developer" possible in a setting

2

where debugging is hard but can be
2.5 3 3.5 4 4.5 5 5.5 6 avoided with extra effort



“Engineers are paid to think and understand.”

— Class slogan #1



Standard Techniques for Correctness

Standard practice (60+ years) uses three techniques:

Tools: type checker, libraries, etc.
Testing: try it on a well-chosen set of examples

Reasoning: think through your code carefully
— convince yourself it works correctly on all inputs
— have another person do the same (“code review”)




Comparing These Techniques

* Differ along some key dimensions
— does it consider all allowed inputs

— does it make sure the answer is fully correct ("=")

Type Checker V4 )4
Testing X v
Reasoning v v

* Combination removes >97% of bugs
— each tends to find different kinds of errors

— e.g., type checker is good at typos & reasoning is not
humans often skip right over typos when reading



Review: Software Development Process

Given: a problem description (in English)

[IdeaGenerationJ [TypeCheckingJ [ Reasoning J [ Testing J

[ Debugging J_[ Beta Users J

Only send to beta users bugs that get past
type checking, reasoning, & testing [ All Users J




“Debugging is twice as hard as
writing the code in the first place.”

Brian Kernighan



Reasoning is Expected

* Inindustry: you will be expected to think through your code

— standard practice is to do this twice (“code review”)
you think through your code then ask someone else to also

* Professionals spend most of their coding time reasoning
— reasoning is the core skill of programming

* Interviews are tests of reasoning
— take the computer away so you only have reasoning

— typical coding problem has lots of cases that are easy to miss
if you don’t think through carefully

— (not about knowing “the answer” to the question

interviewers will throw out interviews that went too well!)



Unlikely to be Automated

 Reasoning & debugging are provably impossible for a
computer to solve in all cases

 Current LLM error rates are much higher than humans

— requires a human to do a lot of debugging
starts with reading and understanding all the generated code...

probably easier to rewrite it yourself

— studies show far show little / no productivity improvement so far
if it reads your mind, it saves you typing, but that's not the limiting factor
if it doesn't read your mind, you must still spend time understanding it

Al is especially bad at reasoning
— e.g., bad at learning formal properties
— e.g., bad at catching rare cases



“These models have read every piece of code on Github,
every StackOverflow question answer, every programming
book, every tweet about coding, transcripts of every
YouTube walkthrough and they still can’t code as well as |

can in every situation.”
— Nat Friedman (former GitHub CEO)



Reasoning

 “Thinking through” what the code does on all inputs
— heither testing nor type checking can do this

 Can be done formally or informally
— most professionals reason informally
— we will start with formal reasoning and move to informal

formal reasoning is a steppingstone to informal reasoning (same core ideas)

formal reasoning still needed for the hardest problems



Correct Requires a Specification

Specification contains two sets of facts

Precondition:

facts we are promised about the inputs

Postcondition:

facts we are required to ensure for the output

Correctness (satisfying the spec):

for every input satisfying the precondition,
the output will satisfy the postcondition



Specifications in TypeScript

* TypeScript, like Java, writes specs in /** ... */

/**

* High level description of what function does
* @param a What “a” represents + any conditions
* @param b What “b” represents + any conditions

* @returns Detailed description of return wvalue
*/
const £ = (a: bigint, b: bigint): bigint => {..};

— these are formatted as “JSDoc” comments
— (in Java, they are JavaDoc comments)



Specifications in TypeScript

* Specifications are written in the comments

/**
* Returns the first n elements from the list L
* @param n non-negative length of the prefix
* @param L the list whose prefix should be returned
* @requires n <= len(L)
* @returns list S such that L. = S ++ T for some T
*/

const prefix = (n: bigint, L: List): List => {..};

— precondition written in @param and @requires
— postcondition written in @returns



Reasoning



Reasoning

 “Thinking through” what the code does on all inputs
— heither testing nor type checking can do this

 Can be done formally or informally

— most professionals reason informally

— we will start with formal reasoning and move to informal
formal reasoning is a steppingstone to informal reasoning (same core ideas)
formal reasoning still needed for the hardest problems

 Definition of correctness comes from the
specification...



Recall: Specification

Specification contains two sets of facts

Precondition:

facts we are promised about the inputs

Postcondition:

facts we are required to ensure for the output

Correctness (satisfying the spec):

for every input satisfying the precondition,
the output will satisfy the postcondition



Facts

* Basic inputs to reasoning are “facts”

— things we know to be true about the variables
these hold for all inputs (no matter what value the variable has)

— typically, “=" or “<”

// @param n a natural number
const f = (n: bigint): bigint => {
= 2n * nj find facts by reading along path

const m
* (m - 1In);  from top to return statement

return (m + 1n)

}s

* At the return statement, we know these facts:
—neN (orn € Zandn = 0)

— m=2n



Facts

* Basic inputs to reasoning are “facts”

— things we know to be true about the variables
these hold for all inputs (no matter what value the variable has)

— typically, “=" or “<”

// @param n a natural number
const f = (n: bigint): bigint => {
const m = 2n * n;

return (m + 1n) * (m — 1n);

}s

* No need to include the fact that n is an integer (n € Z)

— that is true, but the type checker takes care of that

— ho need to repeat reasoning done by the type checker



Finding Facts at a Return Statement

 Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const £ = (a: bigint, b: bigint): bigint => {
const L: List = cons(a, cons(b, nil));
if (a > On && b >= 0On)

return sum (L) ;
find facts by reading along path

from top to return statement

facts are math statements about the code

* Known facts include “a = 0", “b = 0”, and “L = cons(...)”
* Remains to prove that “sum(L) = 0”



Implications

 We can use the facts we know to prove more facts

— if we can prove R using facts P and Q,
we say that R “follows from” or “is implied by” P and Q

— proving this fact is proving an “implication”

 Checking correctness requires proving implications
— need to prove facts about the return values
— return values must satisfy the facts of the postcondition



Collecting Facts

 Saw how to collect facts in code consisting of
— "const" variable declarations
— "if" statements

— collect facts by reading along path from top to return

* Those elements cover all code without mutation
— covers everything describable by our math notation
— we can calculate interesting values with recursion

 Will need more tools to handle code with mutation...



Mutation Makes Reasoning Harder

no mutation full coverage type checker calculation
: ) HW5
induction
local variable mutation Floyd logic HW6

o o

array mutation for-any facts HWS

o o

heap state mutation rep invariants ... o0



Correctness with No Mutation

Proving implications is the core step of reasoning
— other techniques output implications for us to prove

Facts are written in our math notation
— we will use math tools to prove implications

Core technique is "proof by calculation

Other techniques we will need:

— proof by cases
— structural induction



Proof by Calculation



Proof by Calculation

 Proves an implication
— fact to be shown is an equation or inequality

 Uses known facts and definitions
— latter includes, e.g., the fact that len(nil) =0



Example Proof by Calculation

* Givenx=yandz <10, provethatx+z<y+ 10
— show the third fact follows from the first two

e Start from the left side of the inequality to be proved

x+z =y+z <y+10

| J

I
| J

||
Y sincez<10

since x =

All together, this tellsus that x +z < y+ 10




Example Proof by Calculation

* Givenx=yandz <10, provethatx+z<y+ 10
— show the third fact follows from the first two

e Start from the left side of the inequality to be proved

X+z =y+z sincex =y
<y+10 sincez< 10

— easier to read when split across lines

— “calculation block”, includes explanations in right column
proof by calculation means using a calculation block

— “="or “<” relates that line to the previous line



Calculation Blocks

e Chain of “=" shows first = last

— proves thata =d
— all 4 of these are the same number



Calculation Blocks

e Chain of “=" and “<” shows first < last

X+z =y+z since x =y
<y+10 sincez< 10
=y+3+7
<w-+7 sincey +3<w

— each number is equal or strictly larger that previous
last number is strictly larger than the first number

— analogous for “2”



Using Calculation to Prove Correctness

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {
return x + y;

Y

* Known facts “x=>1" and “y > 1"

* Correct if the return value is a positive integer

X+y



Using Calculation to Prove Correctness

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {
return x + y;

Y

* Known facts “x=>1" and “y > 1"

* Correct if the return value is a positive integer

X+y =>x+1 sincey > 1
=>1+1 sincex =1
=2
>1

— calculation shows that x + y =1



Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {

return x + y;

Y

* Known facts “x = 9” and “y = -8”

* Correct if the return value is a positive integer

X+y



Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {

return x + y;

Y

* Known facts “x = 9” and “y = -8”

* Correct if the return value is a positive integer

X+y =X+ -8 sincey > -8
>9-8 sincex =9
=1



Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {

return x + y;

Y

* Known facts “x > 8" and “y > -9”

* Correct if the return value is a positive integer

X+y >x+ -9 sincey > -9
>8-9 sincex > 8
=-1

warning: avoid using “>” (or “<“) multiple times in a calculation block



Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {
return x + y;

Y

* Known facts “x > 4” and “y > 5"

* Correct if the return value is 10 or larger

X+y



Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {
return x + y;

Y

* Known facts “x > 4” and “y > 5"

* Correct if the return value is 10 or larger

X+y >x+5 sincey =5
>4 +5 sincex > 4
=9

proof doesn’t work because the code is wrong!




Using Definitions in Calculations

* Most useful with function calls
— cite the definition of the function to get the return value

* For example:

sum(nil) = 0
sum(x:: L) := x4+ sum(L)

e (Can cite facts such as
— sum(nil) =0

— sum(a :: b :: nil) = a + sum(b :: nil)

second case of definition with x =a and L = b :: nil



Recall: Finding Facts at a Return Statement

 Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const £ = (a: bigint, b: bigint): bigint => {
const L: List = cons(a, cons(b, nil));
if (a > On && b >= 0On)

return sum (L) ;

find facts by reading along path
from top to return statement

* Known facts include “a = 0", “b = 0”, and “L = cons(...)”
* Must prove that sum(L) = 0



Using Definitions in Calculations

sum(nil) =0
x + sum(L)

sum(x:: L)
e Know“a>=>0",“b>0"and “L =a:: b::nil”

* Prove the “sum(L)” is non-negative

sum(L)



Using Definitions in Calculations

sum(nil) =0
x + sum(L)

sum(x:: L)
e Know“a>=>0",“b>0"and “L =a:: b::nil”

* Prove the “sum(L)” is non-negative

sum(L) = sum(a:: b::nil) since L=a:: b::nil
= a + sum(b :: nil) def of sum
=a+ b + sum(nil) def of sum
=a+b def of sum
>0+Db sincea=> 0
=0 sinceb >0



Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {
if (y < On) {
return x + vy;
} else {
return x - 1n;

}
Y

* Known fact in then (top) branch: “y < -1”

X+y



Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {
if (y < On) {
return x + vy;
} else {
return x - 1n;

}
Y

* Known fact in then (top) branch: “y < -1”

X+y <x+-1 sincey <-1
<x+0 since-1 <0

=X



Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint):
if (y < On) {
return x + y;
} else {
return x - 1n;

}
Y

 Known fact in else (bottom) branch

x-1

bigint => ({

: “y 2 O”



Proving Correctness with Conditionals

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {
if (y < On) {
return x + vy;
} else {
return x - 1n;

}
Y

* Known fact in else (bottom) branch: “y = 0”

x-1 <x+0 since-1<0

=X



Proving Correctness with Multiple Claims

* Need to check the claim from the spec at each return

* If spec claims multiple facts, then
we must prove that each of them holds

// Inputs x and y are integers with x <y -1
// Returns a number less than y and greater than x.
const f = (x: bigint, y, bigint): bigint => { .. };

— multiple known facts: x:Z,y:Z, andx <y -1
— multiple claims to prove: x <randr <y

by

where “r” is the return value

— requires two calculation blocks



Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r > > a and r > b
const max = (a: bigint, b, bigint): bigint => {
if (a >= b) {

return a;
declarative spec of max

} else {

return b;

}
}s

* Three different facts to prove at each return

 Two known facts in each branch (return value is “r”):

— then branch: a=>b and r=a
— else branch: a<band r=b



Proof By Cases



Proof By Cases

 Sometimes necessary split a proof into cases
— fact may be hard to prove for all values at once

 Example: can't prove it for all x at once,
but can prove itforx >0 and x <0
— will see an example next

* If we can prove it in those two cases, it holds for all x

— follows since the cases are exhaustive
(don’t need to be exclusive in this case)



Example Proof By Cases

f.Z-17Z
f(m) :=2m+1 ifm=>0
f(m) :=0 ifm<O0

* Want to prove that f(m) > m

* Doesn't seem possible as is
— can't even apply the definition of f
— needtoknowifm<0Oorm=0

e Split our analysis into these two separate cases...



Proof By Cases

f(m) :=2m+ 1 ifm=>0
f(m) :=0 ifm<O

* Prove that f(m) > m

Casem = 0:

f(m) =



Proof By Cases

f(m) :=2m + 1
f(m) :=0

* Prove that f(m) > m

Casem = 0:

flm) =2m+1
=>m+1
> m

ifm=>0
ifm<O0

def of f (since m = 0)
sincem =0
sincel >0



Proof By Cases

f(m) :=2m+ 1 ifm=>0
f(m) :=0 ifm<O

* Prove that f(m) > m

Casem = 0:
f(m) =...>m
Casem < 0:
f(m) =0 def of f (since m < 0)
>m sincem<0

Since these two cases are exhaustive, f{(m) > m holds in general.



HW4-6

* In HW1-3, you

— learned the structure of modern applications (Uls & servers)
will be useful to know for just about any programming job

— experience what happens when bugs appear as failures
lots of debugging

* In HW4-6, you

— will learn how to ensure code is correct before you run it

— experience what it is like not allow bugs to become failures

— each HW is split into written and coding
goal is to do the thinking to ensure it works the first time

(give you the opportunity to fix it up if you do make mistakes)



Recall Correctness with No Mutation

* Proving implications is the core step of reasoning
— other techniques output implications for us to prove

* Core technique is "proof by calculation”

* Other techniques we will need:

— proof by cases
— structural induction



Structural Induction



Proof by Calculation

* Our proofs so far have used fixed-length lists
— e.g.,sum(a::b:nil) =0

 Would like to prove facts about any length list L

* For example...



Example: Repeating List Elements

* Consider the following function:

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Produces a list where every element is repeated twice

echo(1 :: 2::nil)
=1:1:echo(2:: nil) def of echo
=1:1:2:2:echo(nil) def of echo
=1:1:2:2:nil def of echo



Example: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Suppose we have the following code:

const m = len(S); // S is some List

const R = echo (S);

return 2*m; // = len(echo(S))

— spec says to return len(echo(S)) but code returns 2 len(S)

* Need to prove that len(echo(S)) = 2 len(S)



Proof by Calculation

* Our proofs so far have used fixed-length lists
— e.g.,sum(a::b:nil) =0

 Would like to prove facts about any length list L

 Need more tools for this...
— structural recursion calculates on inductive types

— structural induction reasons about structural recursion
or more generally, to prove facts containing variables of an inductive type

— both tools are specific to inductive types



Structural Induction

Let P(S) be the claim “len(echo(S)) = 2 len(S)”

To prove P(S) holds for any list S, prove two implications

Base Case: prove P(nil)
— use any known facts and definitions

Inductive Step: prove P(x :: L)

— x and L are variables
— use any known facts and definitions plus one more fact...

— make use of the fact that L is also a List



Structural Induction

To prove P(S) holds for any list S, prove two implications

Base Case: prove P(nil)
— use any known facts and definitions

Inductive Hypothesis: assume P(L) is true
— use this in the inductive step, but not anywhere else

Inductive Step: prove P(x:: L)
— use known facts and definitions and Inductive Hypothesis



Why This Works

With Structural Induction, we prove two facts

P(nil) len(echo(nil)) = 2 len(nil)
P(x: L) len(echo(x:: L)) =2len(x:: L)
(second assuming len(echo(L)) = 2 len(L))

Why is this enough to prove P(S) for any S : List?



Why This Works

Build up an object using constructors:

nil first constructor

2 :: nil second constructor

1:: 2 ::nil second constructor
1 2 nil

| J
|

nil already exists when building 2 :: nil

\ J
||

2 :: nil already exists when building 1 :: 2 :: nil




Why This Works

Build up a proof the same way we built up the object

P(nil) len(echo(nil)) = 2 len(nil)
P(x: L) len(echo(x:: L)) =2len(x:: L)
(second assuming len(echo(L)) = 2 len(L))

1 2 nil
!_'_!
P(nil)

\ J
|

P(nil) already proven when proving P(2 :: nil)

L J
I

P(2 :: nil) already proven when proving P(1:: 2 :: nil)



Example: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that len(echo(S)) =2 len(S) for any S : List

Base Case (nil):

Need to prove that len(echo(nil)) = 2 len(nil)

len(echo(nil)) =

len(nil) 0
len(x:: L) := 1 +len(L)



Example: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

len(echo(nil)) = len(nil) def of echo
=0 def of len
=20

=2 ]en(ni]) def of len



Example: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that len(echo(S)) =2 len(S) for any S : List

Inductive Step (x :: L):

Need to prove that len(echo(x:: L)) = 2 len(x:: L)

Get to assume claim holds for L, i.e., that len(echo(L)) = 2 len(L)



Example: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that len(echo(S)) =2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x:: L):
len(echo(x:: L))

len(nil) 0
len(x:: L) := 1 +len(L)

=2len(x:: L)



Example: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that len(echo(S)) =2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x:: L):

len(echo(x:: L)) =len(x: x: echo(L)) def of echo
=1 + len(x :: echo(L)) def of len
= 2 + len(echo(L)) def of len
=2+ 2len(L) Ind. Hyp.

=2(1+ len(L))
=2len(x:: L) def of len



Example 2: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Suppose we have the following code:

const y = sum(S); // S is some List

const R = echo (S);

return 2*y; // = sum(echo(S))

— spec says to return sum(echo(S)) but code returns 2 sum(S)

* Need to prove that sum(echo(S)) = 2 sum(S)



Example 2: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

sum(echo(nil)) =

= 2 sum(nil)

sum(nil) =0
sum(x: L) = x+sum(L)



Example 2: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

sum(echo(nil)) = sum(nil) def of echo
=0 def of sum
=20
= 2 sum(nil) def of sum

Inductive Step (x :: L):

Need to prove that sum(echo(x:: L)) =2 sum(x:: L)
Get to assume claim holds for L, i.e., that sum(echo(L)) = 2 sum(L)



Example 2: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x:: L):

sum(echo(x:: L)) =

=2 sum(x: L)
sum(nil) =0
sum(x: L) = x+sum(L)



Example 2: Repeating List Elements

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x:: L):

sum(echo(x:: L)) =sum(x: x:: echo(L)) def of echo
= x + sum(x :: echo(L)) def of sum
= 2x + sum(echo(L)) def of sum
= 2x + 2 sum(L) Ind. Hyp.
= 2(x + sum(L))

=2 sum(x: L) def of sum



Recall: Concatenating Two Lists

Mathematical definition of concat(S, R)

concat(nil, R) = R important operation
concat(x :: L, R) := x:: concat(L, R) abbreviated as "4"

Puts all the elements of L. before those of R

concat(1 :: 2 ::nil, 3 :: 4 ::nil)
=1 :: concat(2 :: nil, 3 :: 4 :: nil) def of concat
=1: 2 :: concat(nil, 3 :: 4 :: nil) def of concat
=1:2:3::4:nil def of concat



Example 3: Length of Concatenated Lists

concat(nil, R) = R important operation
concat(x:: L,R) := x: concat(L, R)) abbreviated as "#"

* Suppose we have the following code:

const m = len(S); // S is some List
const n = len(R); // R is some List
return m + n; // = len(concat(S, R))

— spec returns len(concat(S, R)) but code returns len(S) + len(R)

* Need to prove that len(concat(S, R)) =len(S) + len(R)



Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L,R) := x: concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

— prove by induction on S
— prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

len(concat(nil, R))=

= len(nil) + len(R)



Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L,R) := x: concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

— prove by induction on S
— prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

len(concat(nil, R))=len(R) def of concat
=0 + len(R)
= len(nil) + len(R) def of len



Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L,R) := x: concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

Inductive Step (x :: L):

Need to prove that
len(concat(x :: L, R)) =len(x:: L) + len(R)
Get to assume claim holds for L, i.e., that

len(concat(L, R)) = len(L) + len(R)



Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L,R) := x: concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) =len(L) + len(R)

Inductive Step (x:: L):

len(concat(x:: L,R)) =

= len(x:: L) + len(R)



Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L,R) := x: concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) =len(L) + len(R)

Inductive Step (x:: L):

len(concat(x:: L,R)) =len(x:: concat(L, R)) def of concat
=1 + len(concat(L, R)) def of len
=1 + len(L) + len(R) Ind. Hyp.
=len(x:: L) + len(R) def of len



Comparing Reasoning vs Testing

const concat = (S: List, R: List): List => {
if (S.kind === “nil”) {
return R;
} else {

return cons(S.hd, concat(S.tl, R));

}
s

* Testing: 3 cases
— loop coverage requires 0, 1, and many recursive calls

 Reasoning: 2 calculations



Example: Faster Sum

sum-acc(nil, r) =T

linear time
sum-acc(x :: L, r) :=sum-acc(L,x+r)
* Suppose we have the following code:
const s = sum acc(S, 0); // S is some List

return s; // = sum(S)

— spec says to return sum(S) but code returns sum-acc(S, 0)

* Need to prove that sum-acc(S, 0) = sum(S)
— will prove, more generally, that sum-acc(S, r) = sum(S) +r



Example 4: Faster Sum

sum-acc(nil, r) =T
sum-acc(x :: L, r) :=sum-acc(L,x+r)

* Prove that sum-acc(S, r) = sum(S) +r
— prove by induction on S
— prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

sum-acc(nil, r) =

=sum(nil) +r



Example 4: Faster Sum

sum-acc(nil, r) =T
sum-acc(x :: L, r) :=sum-acc(L,x+r)

* Prove that sum-acc(S, r) = sum(S) +r
— prove by induction on S
— prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

sum-acc(nil, r) =r def of sum-acc
=0+r
= sum(nil) +r def of sum



Example 4: Faster Sum

sum-acc(nil, r) =T
sum-acc(x :: L, r) :=sum-acc(L,x+r)

* Prove that sum-acc(S, r) = sum(S) +r

Inductive Step (x :: L):

Need to prove that
sum-acc(Xx:: L, r)=sum(x::L)+r
Get to assume claim holds for L, i.e., that

sum-acc(L, r) =sum(L) +r holds for any r



Example 4: Faster Sum

sum-acc(nil, r) =T
sum-acc(x :: L, r) :=sum-acc(L,x+r)

* Prove that sum-acc(S, r) = sum(S) +r
Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x:: L):

sum-acc(x: L, r) =

=sum(x: L) +r



Example 4: Faster Sum

sum-acc(nil, r) =T
sum-acc(x :: L, r) :=sum-acc(L,x+r)

* Prove that sum-acc(S, r) = sum(S) +r
Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x:: L):

sum-acc(x:: L, r) =sum-acc(L,x+r)  defof sum-acc
=sum(L)+x+r Ind. Hyp.
=x+sum(L) +r
=sum(x: L) +r def of sum



“We go together”

structural induction

inductive types
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