CSE 331

Specifications

Kevin Zatloukal

Specifications

Specifications

* Correctness requires a definition of the correct answer

* Description must be precise
— can’t have disagreement about what is correct

* Informal descriptions (English) are usually imprecise

— necessary to “formalize” the English
turn the English into a precise mathematical definition

— professionals are very good at this
usually just give English definitions
important skill to practice

— we will start out completely formal to make it easier

Kinds of Specifications

 Imperative specification says how to calculate the answer
— lays out the exact steps to perform to get the answer

 Declarative specification says what the answer looks like
— does not say how to calculate it
— up to us to ensure that our code satisfies the spec

 Can implement a different imperative specification
— again, up to us to ensure that our code satisfies the spec

Example: Imperative Specification

* Absolute value: |x| =x if x = 0 and -x otherwise
— definition is an “if” statement

const abs = (x: bigint): bigint => ({
if (x >= 0On) {
return x;
} else {

return —-X;

just translating math to TypeScript

Example: Declarative Specification

* Subtraction (a - b): return x such thatb + x=a
— canseethatb+ (a-b)=b+a-b=a

const sub = (a : bigint, b: bigint): bigint => {

27

we are left to figure out how to do this...
and convince ourselves it satisfies the spec

Example: Declarative Specification

* Square root of x is humber y such that y? = x

— not all positive integers have integer square roots,
so... let’s round up

- (y-1*<x<y?

smallest integer y such that x < y?
const sgrt = (x: bigint): bigint => {

27

} we are left to figure out how to do this...
and convince ourselves it satisfies the spec

Example: Declarative Specification

* Absolute value |x| is an integer y such that
—y=X
—y=-X
—y=XoO0Ory=-x

const abs = (x: bigint): bigint => ({
if (x >= 0) {
return x;
} else {
return —-X;

} requires some thinking to make sure this code
) returns a number with the properties above

Example: Imperative Specification

* From HW3: Dijkstra's Algorithm

add a O-step (empty) path from start to itself to active

while active is not empty:
minPath = active.removeMin() // shortest active path

if minPath.end is end:
return minPath // shortest path from start to end!

if minPath.end is in finished:
continue // longer path to minPath.end than the one we found before

add minPath.end to finished // just found shortest path to here!

// add all paths that have one step added to this shortest path
for each edge e in adjacent.get(minPath.end):
if e.end is not in finished:
newPath = minPath + e
add newPath to active

steps are described fully
(just translate to TypeScript)

return undefined // no path from start to end :(

"Straight From the Spec”

* If imperative, just translate math into code
— TypeScript here, but could also be Java
— we often call this "straight from the spec"

* if declarative (or implementing different imperative spec),
then we will need new tools for checking its correctness

Recall: Kinds of Specifications

 Imperative specification says how to calculate the answer
— lays out the exact steps to perform to get the answer

 Declarative specification says what the answer looks like
— does not say how to calculate it
— up to us to ensure that our code satisfies the spec

 Can implement a different imperative specification
— again, up to us to ensure that our code satisfies the spec

Examples from the Java APlIs

java.util.Map — set of (key, value) pairs

default V replace(K key, V value)

Replaces the entry for the specified key only if it is currently mapped to some value.

Implementation Requirements:

The default implementation is equivalent to, for this map:

if (map.containsKey(key)) {
return map.put(key, value);
} else
return null;

Imperative

Examples from the Java APlIs

java.util.Map — set of (key, value) pairs

void putAll(Map<? extends K,? extends V> m)

Copies all of the mappings from the specified map to this map (optional operation). The effect of this call is
equivalent to that of calling put (k, v) on this map once for each mapping from key k to value v in the specified map.
The behavior of this operation is undefined if the specified map is modified while the operation is in progress.

Imperative

boolean containsKey(0Object key)

Returns true if this map contains a mapping for the specified key. More formally, returns true if and only if this map
contains a mapping for a key k such that Objects.equals(key, k). (There can be at most one such mapping.)

Declarative

Examples from the Java APlIs

Java.util.Object

public int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hash tables such as those
provided by HashMap.

The general contract of hashCode is:

« If two objects are equal according to the equals(0Object) method, then calling the hashCode method on each of
the two objects must produce the same integer result.

« It is not required that if two objects are unequal according to the equals(java.lang.0bject) method, then
calling the hashCode method on each of the two objects must produce distinct integer results. However, the
programmer should be aware that producing distinct integer results for unequal objects may improve the
performance of hash tables.

Declarative

Next Up...

* Toolkit for writing imperative specifications

— define math for data and code
write specifications that are language independent

(don't want a toolkit that only works for TypeScript)

— describe how to translate imperative specs into TypeScript
try to make the translations as straightforward as possible (fewer mistakes)

— mention new TypeScript features when related
critical to understand what bugs the type system caches and which it does not

 Will look at declarative specifications later

Math Notation

Basic Data Types in Math

* |n math, the basic data types are “sets”

— sets are collections of objects called elements

— write x € S to say that “x” is an element of set “S”,
and x & S to say that it is not.

 Examples:

X EZ
XEN
XER
XEB
XES
XES

X is an integer

X is a hon-negative integer (natural)

X is a real number
X is T or F (boolean)
X is a character

X is a string

— hon-standard names

Basic Data Types in TypeScript

integer XEZL bigint
natural xEN bigint non-negative
real xER number
boolean xEB boolean
character XES string length 1
string X€ES string

we will often write
X :Z instead of x € Z

— only subtraction on non-negative can produce negative

Ways to Create New Types In Math

* Union Types SSUN

— contains every object in either (or both) of those sets
— e.g., all strings and natural numbers

 Ifx€NUS, then x could be a natural or string

e Two sets can contain common elements
— in this case, the sets are disjoint

Ways to Create New Types in TypeScript

* Union Types string | bigint
— can be either one of these

e How do we work with this code?

const x: string | bigint = .;

// can I call isPrime (x)?

* We can check the type of x using “typeof”
— TypeScript understands these expressions
— will “narrow” the type of x to reflect that information

Type Narrowing With “If” Statements

* Union Types string | bigint
— can be either one of these

e How do we work with this code?

const x: string | bigint = .;

if (typeof x === "bigint") {
console.log (isPrime (x)) // okay! x is a bigint
} else {

// x is a string

Type Narrowing vs Casting

const x: string | bigint = .;

if (typeof x === “bigint”) {
console.log (isPrime (x)) // okay! x is a bigint
} else {

// x is a string

* Note that this does not require a type cast
— TypeScript knows x is a bigint inside the “if” (narrowing)

 331:there are no type casts (won’t even show syntax)
— unlike Java, TypeScript casts are unchecked at runtime
— seem designed to create extremely painful debugging

Type Narrowing Gotcha

const f = (x: bigint): string | bigint => ..;
if (typeof f(x) === “bigint”) ({
console.log (isPrime (f (x))) // why not allowed?

* TypeScript will (properly) reject this
— no guarantee that f(x) returns the same value both times!

Type Narrowing of Function Calls

const f = (x: bigint): string | bigint => ..;

const y = f(x);
if (typeof vy === “bigint”) ({
console.log(isPrime (y)) // this works now

}

* TypeScript can see that the two values are the same

 Functions that return different values for the same
inputs are confusing!
— maybe better to avoid that

Compound Types In Math

« Compound types combine multiple data types
— multiple ways build them

* Record Types {x:N, y:N}
— record with fields “x” and “y” each containing a number
— e.g., {x:3,y: 5}

* Note that {x: 3, y: 5} ={y: 5, x: 3} in math
— field names matter, not order
— note that these are not "==" in JavaScript

in math, “=“ means same values
in JavaScript, "==" is reference equality

Record Types in TypeScript

* RecordTypes {x: bigint, y: bigint}
— anything with at least fields “x” and “y”

* Retrieve a part by name:

const t: {x: bigint, y: bigint} = .. ;
console.log(t.x);

Optional Fields in TypeScript

* Records can have optional fields
type T = {x: bigint, y?: bigint};

const t: T = {x: 1n};

— typeof“t.y”is “bigint | undefined”

* Functions can have optional arguments

const £ = (a: bigint, b?: bigint): bigint => {
console.log(b);

Y

— typeof “b”is “bigint | undefined”

Compound Types In Math

* Record Types {x:N, y:N}
— record with fields “x” and “y” each containing a number
— e.g., {x:3,y: 5}

* Tuple Types N X N
— pair of two natural numbers, e.g., (5, 7)
— can do tuples of 3, 4, or more elements also

* Mostly equivalent alternatives
— both let us put parts together into a larger object
— record distinguishes parts by nhame
— tuple distinguishes parts by order

Retrieving Part of a Tuple

* To refer to tuple parts, we must give them names

* Tuple Types N X N
Let(a,b) :=t. Suppose we know that t = (5, 7)
“:=" means a definition Then, we havea=5and b =7

* Tuple Types [bigint, bigint]

const t: [bigint, bigint] = ..;
const [a, b] = t;
console.log(a); // first part of t

Simple Functions in Math

* Simplest function definitions are single expressions

Will write them in math like this:

double: N - N
double(n) :=2n

— first line declares the type of double function

takes a natural number input to a natural number output

— second line shows the calculation

know that "n" is a natural number from the first line

— will often put the type in the text before the definition, e.g.,

The function double : N — N is defined by...
double(n) := 2n

Simple Functions in Math

* Another example:

dist: {x: R, y: R} - R

dist(p) := (px* + p.y?)!/?

— first line tells us that "p" is a record and "p.x" is a real number

* Can define short-hand for types in math also

type Point := {x: R, y: R}

dist: Point > R
dist(p) := (p-x* + p.y*)/?

Complex Functions in Math

* Most interesting functions are not simple expressions
— heed to use different expressions in different cases

e (Can use side-conditions to split into cases

abs:R->R
abs(x) :=x ifx>0
abs(x) := —x ifx<0

— conditions must be exclusive and exhaustive
we do not want to require on order to determine which applies

— there is a better way to do this in many cases...

Pattern Matching

e (Can also define functions by “pattern matching”

double:N - N
double(0) =0
double(n+1) := double(n) + 2

— first case matches only 0

— second case matches numbers 1 more than somen: N ...

double(6) = double(5+1) so it matches withn=5
since n = 0, we have n+1 > 1, so it matches 1, 2, 3, ...

— pattern “n+2” would match 2, 3, 4, ...

 Simplifies the math in multiple ways...

Pattern Matching on Natural Numbers

* Pattern matching definition

double(0) :=0
double(n+1) := double(n) + 2

Is simpler than using side conditions

double(n) :=0 ifn=0
double(n) :=double(n-1) + 2 ifn>0

— e.g., need to explain why double(n-1) is legal
easy in this case, but it gets harder

 We will prefer pattern matching whenever possible

Pattern Matching on Booleans

* Booleans have only two legal values: T and F

e (Can pattern match just by listing the values:
— the function not : B — B is defined as follows:

not(T) :=F
not(F):=T

— hegates a boolean value
— no simpler way to define this function!

Pattern Matching on Records

 (Can pattern match on individual fields of a record
type Steps:={n:N, fwd: B}
change : Steps - N
change({n: m, fwd: T}) :=m

change({n: m, fwd: F}) :=-m

— clear that the rules are exclusive and exhaustive

 Can match on multiple parameters
— e.g., change({n: m+5, fwd: T}) :=2m
— just make sure the rules are exclusive and exhaustive

Pattern Matching in TypeScript

* TypeScript does not provide pattern matching
— some other languages do! (see 341)

e We must translate into “1 £”"s on our own

type Steps = {n: number, fwd: boolean};

const change = (s: Steps) => {
if (s.fwd) {
return s.n;
} else {

return -s.n;
} still straight from the spec

but easy to make mistakes

Pattern Matching in TypeScript

double(0) :=0
double(n+1) := double(n) + 2

 Also need to be careful with natural numbers

// m is non-negative

const double = (m: bigint) => {
if (m === 0On) {
return On;
} else | spec says double(n)
return double (m — 1n) + 2n; but code says double(m - 1)

}
b

— pattern matching uses “n+1” but the code uses “m” (or “n”)
sadly, TypeScript will not let “n+1” be the argument value

Code Without Mutation

« Saw all types of code without mutation:
— straight-line code
— conditionals
— recursion

* This is all that there is!
— can write anything computable with just these

 Saw TypeScript syntax for these already...

Code Without Mutation

Example function with all three types

// n must be a non-negative integer
const f = (m: bigint): bigint => {
if (m === 0n) {

return 1n;

} else { What does this compute?
const n = m — 1n;
return 2n * f(n); f(m) =2

J f:N-N

& f(0) =1

f(n+1) :=2-f(n)

Inductive Data Types

Inductive Data Types

* Previous saw records, tuples, and unions

— very useful but limited
can only create types that are “small” in some sense

— missing one more way of defining types
arguably the most important

* One critical element is missing: recursion

Java classes can have fields of same type, but records cannot

* Inductive data types are defined recursively
— combine union with recursion

Inductive Data Types

 Describe a set by ways of creating its elements
— each is a “constructor”

typeT:= C(x:Z) | Dx:Z, y:T)

— second constructor is recursive

— can have any number of arguments (even none)
will leave off the parentheses when there are none

 Examples of elements

C(D)
D(2, C(1)) in math, these are not function calls
D(3,D(2,C(1)))

Inductive Data Types

 Each element is a description of how it was made

C(D)
D(2, C(1))
D(3,D(2, C(1)))

 Equal when they were made exactly the same way

— C(1) #C(2)
— D(2,C(1)) # D(3, C(1))
— D(2,C(1)) # D(2, C(2))

— D(1,D(2,C(3))) =D(1,D(2,C(3)))

Natural Numbers

type N := zero | succ(n:N)

 Inductive definition of the natural numbers

Zero 0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3

The most basic set we have is defined inductively!

Even Natural Numbers

type E := zero | two-more(n : E)

 |nductive definition of the even natural numbers

Z€ro

two-more(zero
() much better notation

two-more(two-more(zero))

N S~ N O

two-more(two-more(two-more(zero)))

Lists

type List := nil | cons(x:Z, L: List)

* Inductive definition of lists of integers

nil

cons(3, nil)

cons(2, cons(3, nil))

cons(1, cons(2, cons(3, nil)))

Shorthand Notation for Lists

type List := nil | cons(x:Z, L: List)
* We will use:
— "x:: L" to mean "cons(x, L)"

- "[1,2,3]"tomean "1 :: 2 :: 3 :: nil"

 Examples:

nil nil

cons(3, nil) 3 :: nil
cons(2, cons(3, nil)) 2::3 il
cons(1, cons(2, cons(3, nil))) 1:2:3::nil

~ ~ ~~ M~
w
| —

!\J
w
—_

Inductive Data Types in TypeScript

* TypeScript does not natively support inductive types
— some “functional” languages do (e.g., OCaml and ML)

 We must think of a way to cobble them together...
— our answer is a design pattern...

Designh Patterns

 Introduced in the book of that name
— written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides

— worked in C++ and SmallTalk

Desien Patterns
Elements of Regsable
Object-Orjefitedd Softwara

* Found that they independently developed S
many of the same solutions to recurring problems
— wrote a book about them

 Many are problems with OO languages
— authors worked in C++ and SmallTalk
— some things are not easy to do in those languages

Type Narrowing with Records

* Use a literal field to distinguish records types
— require the field to have one specific value

— called a “tag” field
cleanest way to make unions of records

type Tl = {kind: "T1", a: bigint, b: number};
type T2 = {kind: "T2" a: bigint, b: string};

const x: T1 | T2 = ..;

if (x.kind === "T1") { // legal for either type
console.log(x.b); // must be Tl.. x.b is a number
} else {

console.log(x.b); // must be T2.. x.b is a string

Inductive Data Type Design Pattern

typeT := C(x:Z) | D(x:S8%,t:T)

 Implement in TypeScript as

type T = {kind: "C", x: number}
| {kind: "D", x: string, t: T};

Inductive Data Type Design Pattern

typeT := A | B| C(x:Z) |D(xx:S,t:T)

 Implement in TypeScript as

type T = {kind:
| {kind:
| {kind:
| {kind:

"A" }
"B" }
"C", x: bigint}

"D", x: string,

t: T},

Inductive Data Types in TypeScript

type List := nil | cons(x:Z, L: List)

* Implemented in TypeScript as

type List = {kind: "nil"}
| {kind: "cons", hd: bigint, tl: List};

* How do | check if my list is empty?
if (mylist.kind === "nil") {

}

Inductive Data Types in TypeScript

« Make this look more like math notation...

type List = {kind: "nil"}
| {kind: "cons", hd: bigint, tl: List};

const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => {
return {kind: "cons", hd: hd, tl: tl};

— use only these two functions to create Lists
do not create the records directly

— note that we only have one instance of nil

this is called a “singleton” (there is a design pattern for ensuring this)

Inductive Data Types in TypeScript

e Make this look more like math notation...
const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => { .. };

e Can now write code like this:

const L: List = cons(l, cons (2, nil));

Inductive Data Types in TypeScript

e Make this look more like math notation...
const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => { .. };

 Still not perfect:
— JS “===" (references to same object) does not match “="

cons(l, cons (2, nil)) === cons(l, cons (2, nil)) // false!

— need to define an equal function for this
will see this later...

Functions Defined on Inductive Data Types

* We need recursion to define interesting functions
— we will primarily use structural recursion

* Inductive types fit esp. well with pattern matching
— every object is created using some constructor
— match based on which constructor was used

Length of a List

type List := nil | cons(hd: Z, tl: List)

 Mathematical definition of list length:

len: List > N

len(nil) =0
len(x::L) := 1+1len(L)

— any list is either nil or x :: L. for some x and L
— cases are exclusive and exhaustive

Length of a List

 Mathematical definition of length

len(nil) =0
len(x:: L) 1+ len(L)

* Translation to TypeScript

const len = (S: List): bigint => {
if (S.kind === "nil") {
return On;
} else {
return 1ln + len(S.tl);

) TypeScript will see that this is valid
since s.kind != "nil"

Swapping Elements in a List

type List := nil | cons(hd: Z, tl: List)

* Function that swaps adjacent elements in a list:

swap : List — List

swap(nil) := nil
swap(x:nil) = x:nil
swap(x:y:L) = y:ux:swap(L)

— any list is either nil or x :: nil or x :: y :: L. for some x, y and L
— cases are exclusive and exhaustive

Swapping Elements in a List

swap(nil) := nil
swap(x:nil) = x:nil
swap(x:y:L) = y:ux:swap(L)

* Translation to TypeScript

const swap = (S: List): bigint => {
if (S.kind === "nil") {
return nil;
} else 1f (S.tl.kind === "nil") {
return cons(S.hd, nil); =S
} else {

return cons(S.tl.hd, S.hd, swap(S.tl.tl));

) TypeScript will see that these are valid since
S.kind !'= "nil"and s.tl.kind != "nil"

Structural Recursion

 Examples only recurse on parts of the input
len(x:: L) := 1+ 1len(L)
— call on x :: L recurses on L
swap(x::y:: L) := y:x:swap(L)

— callonx:y: LrecursesonL
— such cases are called "structural recursion"

e Guarantees no infinite recursion!
— ohe argument gets strictly smaller on each call
— restrict ourselves to structural recursion in math and TS

Formalizing Specifications

Formalizing a Specification

 Sometimes the instructions are written in English
— English is often imprecise or ambiguous

* First step then is to “formalize” the specification:
— translate it into math with a precise meaning

* Best to start by looking at some examples
— try to spot a pattern
— that usually indicates recursion

Definition of Sum of Values in a List

 Sum of a List: “add up all the values in the list”

* Look at some examples...

L sum(L)
nil 0

3 ::nil 3
2::3:nil 2+3

1::2:3::nil 14243

Definition of Sum of Values in a List

* Look at some examples...

L

nil

3 ::nil
2::3:nil
1::2::3:nil

sum(L)

2+3
1+2+43

e Mathematical definition of sum:

sum(nil)
sum(x :: L)

Definition of Sum of Values in a List

L sum(L)
1::2:3::nil 14243

e Mathematical definition of sum:

sum(nil) =0
sum(x:: L) := x+sum(L)

* Check that this works on the examples...

sum(1:: 2 :: 3 ::nil)

=1+ sum(2 :: 3 :: nil) def of sum (2" line)
=1+ 2 + sum(3 :: nil) def of sum (2nd line)
=1+ 2+ 3 + sum(nil) def of sum (2" line)

=1+2+3 def of sum (1stline)

Sum of Values in a List

e Mathematical definition of sum

0
X + sum(L)

sum(nil)

sum(x :: L)

* Translation to TypeScript

const sum = (L: List): bigint => {
if (L.kind === “nil”) {
return On;
} else {
return L.hd + sum(L.tl);

s

Definition of List Equality

* Equal lists: “built with same steps”

* Look at some examples...

L R equal(L, R)
nil nil

nil 1::nil

1::nil nil

1::nil 1::nil

1::nil 2 ::nil

1:2:nil 1:3:nil

Definition of List Equality

L R equal(L, R)
nil nil T
nil 1::nil F
1::nil nil F
1::nil 1::nil T
1::nil 2 ::nil F
1:2:nil 1:3:nil F

* Mathematical definition of equal : (List, List) - B

equal(nil, nil) =T
equal(nil, y :: R) =F
equal(x :: L, nil) =F

equal(x::L,y::R) :=(x=y)andequal(L, R)

Definition of Sum of Values in a List

L R equal(L, R)
1::2:nil 1:: 3 ::nil F

* Mathematical definition of equal : (List, List) - B

equal(nil, nil) =T
equal(nil, y :: R) =F
equal(x :: L, nil) =F

equal(x::L,y::R) :=(x=y)andequal(L, R)

* Check that this works on the examples...

equal(1:: 2 ::nil, 1:: 3 ::nil)
= (1 = 2) and equal(2 :: nil, 3 :: nil) def of equal (4™ line)
= (1 =2) and (2 = 3) and equal(nil, nil) def of equal (4™ line)
=Tand T and F def of equal (15t line)

Inductive Data Types in TypeScript

* Translation to TypeScript

type List = {kind: "nil"}
| {kind: "cons", hd: bigint, tl: List};

const equal = (L: List, R: List): boolean => {
if (L.kind === "nil") {
return R.kind === "nil";
} else {
if (R.kind === "nil") {
return false;
} else {
return L.hd === R.hd && equal (L.tl, R.tl);

b7 math definition may be easier to read

Definition of List Concatenation

 Concatenate L and R: “list containing
the elements of L followed by the elements of R”

* Look at some examples...

L R concat(L, R)

nil nil nil

nil 3 ::nil 3 ::nil

1::nil 3 ::nil 1:3:nil
1:2:nil 3 ::nil 1::2::3:nil
1:2:nil 3:4::nil 1:2:3:4:nil

Definition of List Concatenation

L R concat(L, R)

nil nil nil

nil 3 ::nil 3 ::nil

1::nil 3 ::nil 1:3:nil
1:2:nil 3 ::nil 1::2::3:nil
1:2:nil 3:4::nil 1:2:3:4:nil

* Mathematical definition of concat : (List, List) — List

concat(nil, R) =R
concat(x :: L, R) := x :: concat(L, R)

Definition of List Concatenation

1::2:nil 3::4 il 1:2:3::4:nil

* Mathematical definition of concat : (List, List) — List

concat(nil, R) =R
concat(x :: L, R) := x :: concat(L, R)

* Check that this matches examples...

concat(1 :: 2 ::nil, 3::4 ::nil)
= 1:: concat(2 :: nil, 3 :: 4 :: nil) def of concat (2" line)
= 1:: 2 :: concat(nil, 3 :: 4 :: nil) def of concat (2" line)
=1:2:3:4::nil def of concat (1stline)

Definition of List Concatenation

* Mathematical definition of concat : (List, List) — List

concat(nil, R) =R
concat(x :: L, R) := x :: concat(L, R)

* Translation to TypeScript

const concat = (L: List, R: List): List => {
if (L.kind === "nil") {
return R;
} else {
return cons(L.hd, concat(L.tl, R));

}

Notes on Lists Posted on the Website

* Shorter version of everything we've discussed

 |n addition:
1. Defines a few more useful list functions

2. Mentions important properties of concat:
— operator notation "#"
— associativity and identity

3. Mentions important applications of lists
— maps are lists of (key, value) pairs
— sets can be defined defined as lists

* Lists are our most important data type!

Definition of List Reversal

e Reversal of a List: “same values but in reverse order”

* Look at some examples...

L rev(L)

nil nil

[3] [3] 3 nil

[2, 3] [3, 2] 3:: 2 il

[1, 2, 3] [3, 2, 1] 3:2:1 il

Definition of List Reversal

* Look at some examples...

L rev(L)

nil nil

3 ::nil 3 ::nil
2::3:nil 3::2:nil
1::2::3:nil 3:2:1:nil

* Where does rev([2, 3]) show up in rev([1, 2, 3])?
— at the beginning, with 1 :: nil after it

* Where does rev([3]) show up in rev([2, 3])?
— at the beginning, with 2 :: nil after it

Definition of List Reversal

1::2:3::nil 321 il

e Mathematical definition of rev : List — List

rev(nil) :=nil
rev(x:: L) :=rev(L) # (x:: nil)

* Check that this matches examples...

rev(l:2:3:nil)

=rev(2:: 3 :nil) # [1] def of rev
=rev(3 :: nil) # [2] # [1] def of rev
= rev(nil) # [3] # [2] # [1] def of rev
=[] # [3] # [2] # [1] def of rev

=[3,2,1] def of concat (many times)

Reversing A Lists

e Mathematical definition of rev : List — List

rev(nil) :=nil
rev(x:: L) :=rev(L) # (x:: nil)

* Other definitions are possible, but this is simplest

* Always make definitions as simple as possible

Formalizing a Specification

 Sometimes the instructions are written in English
— English is often imprecise or ambiguous

First step then is to “formalize” the specification:
— translate it into math with a precise meaning

How do we tell if the specification is wrong?

— specifications can contain bugs!
s it obvious that equal, concat, & rev are correct? Maybe not.

We can test our definition on some examples
— what can we do to increase the odds we spot bugs?

