
Specifications
Kevin Zatloukal

CSE 331

Specifications

Specifications

• Correctness requires a definition of the correct answer

• Description must be precise
– can’t have disagreement about what is correct

• Informal descriptions (English) are usually imprecise
– necessary to “formalize” the English

turn the English into a precise mathematical definition

– professionals are very good at this
usually just give English definitions
important skill to practice

– we will start out completely formal to make it easier

Kinds of Specifications

• Imperative specification says how to calculate the answer
– lays out the exact steps to perform to get the answer

• Declarative specification says what the answer looks like
– does not say how to calculate it
– up to us to ensure that our code satisfies the spec

• Can implement a different imperative specification
– again, up to us to ensure that our code satisfies the spec

Example: Imperative Specification

• Absolute value: |x|	=	x if x	≥	0 and –x otherwise
– definition is an “if” statement

 const abs = (x: bigint): bigint => {
 if (x >= 0n) {
 return x;
 } else {
 return –x;
 }
 }

just translating math to TypeScript

Example: Declarative Specification

• Subtraction (a	–	b): return x such that b	+	x	=	a
– can see that b	+	(a	– b)	=	b	+	a	–	b	=	a

 const sub = (a : bigint, b: bigint): bigint => {

 ??

 }

we are left to figure out how to do this…
and convince ourselves it satisfies the spec

Example: Declarative Specification

• Square root of x is number y such that y2	=	x
– not all positive integers have integer square roots,

so… let’s round up
– (y	–	1)2	≤	x	≤	y2

smallest integer y such that x	≤	y2

 const sqrt = (x: bigint): bigint => {

 ??

 } we are left to figure out how to do this…
and convince ourselves it satisfies the spec

Example: Declarative Specification

• Absolute value |x| is an integer y such that
– y	≥	x	
– y	≥	–x
– y	=	x	or y	=	–x

 const abs = (x: bigint): bigint => {
 if (x >= 0) {
 return x;
 } else {
 return –x;
 }
 }

requires some thinking to make sure this code
returns a number with the properties above

Example: Imperative Specification

• From HW3: Dijkstra's Algorithm

steps are described fully
(just translate to TypeScript)

"Straight From the Spec"

• If imperative, just translate math into code
– TypeScript here, but could also be Java
– we often call this "straight from the spec"

• if declarative (or implementing different imperative spec),
then we will need new tools for checking its correctness

Recall: Kinds of Specifications

• Imperative specification says how to calculate the answer
– lays out the exact steps to perform to get the answer

• Declarative specification says what the answer looks like
– does not say how to calculate it
– up to us to ensure that our code satisfies the spec

• Can implement a different imperative specification
– again, up to us to ensure that our code satisfies the spec

Examples from the Java APIs

java.util.Map — set of (key, value) pairs

Imperative

Examples from the Java APIs

java.util.Map — set of (key, value) pairs

Imperative

Declarative

Examples from the Java APIs

java.util.Object

Declarative

Next Up…

• Toolkit for writing imperative specifications
– define math for data and code

write specifications that are language independent
(don't want a toolkit that only works for TypeScript)

– describe how to translate imperative specs into TypeScript
try to make the translations as straightforward as possible (fewer mistakes)

– mention new TypeScript features when related
critical to understand what bugs the type system caches and which it does not

• Will look at declarative specifications later

Math Notation

Basic Data Types in Math

• In math, the basic data types are “sets”
– sets are collections of objects called elements
– write x ∈	S to say that “x” is an element of set “S”,

and x ∉	S to say that it is not.

• Examples:
 x ∈	ℤ x is an integer
 x ∈	ℕ x is a non-negative integer (natural)
 x ∈	ℝ x is a real number
 x ∈	𝔹 x is T or F (boolean)
 x ∈	𝕊	 x is a character
 x ∈	𝕊* x is a string

non-standard names

Basic Data Types in TypeScript

Condition Math TypeScript Up to Us

integer x	∈	ℤ bigint

natural x	∈	ℕ bigint non-negative

real x	∈	ℝ number

boolean x	∈	𝔹 boolean

character x	∈	𝕊 string length 1

string x	∈	𝕊* string

we will often write
x : ℤ instead of x ∈	ℤ

– only subtraction on non-negative can produce negative

Ways to Create New Types In Math

• Union Types 	 𝕊*		∪		ℕ
– contains every object in either (or both) of those sets
– e.g., all strings and natural numbers

• If x	∈	ℕ	∪	𝕊*, then x could be a natural or string

• Two sets can contain common elements
– in this case, the sets are disjoint

Ways to Create New Types in TypeScript

• Union Types string | bigint
– can be either one of these

• How do we work with this code?

const x: string | bigint = …;

// can I call isPrime(x)?

• We can check the type of x using “typeof”
– TypeScript understands these expressions
– will “narrow” the type of x to reflect that information

Type Narrowing With “If” Statements

• Union Types string | bigint
– can be either one of these

• How do we work with this code?

const x: string | bigint = …;

if (typeof x === "bigint") {
 console.log(isPrime(x)) // okay! x is a bigint
} else {
 … // x is a string
}

Type Narrowing vs Casting

const x: string | bigint = …;

if (typeof x === “bigint”) {
 console.log(isPrime(x)) // okay! x is a bigint
} else {
 … // x is a string
}

• Note that this does not require a type cast
– TypeScript knows x is a bigint inside the “if” (narrowing)

• 331: there are no type casts (won’t even show syntax)
– unlike Java, TypeScript casts are unchecked at runtime
– seem designed to create extremely painful debugging

Type Narrowing Gotcha

const f = (x: bigint): string | bigint => …;

if (typeof f(x) === “bigint”) {
 console.log(isPrime(f(x))) // why not allowed?
}

• TypeScript will (properly) reject this
– no guarantee that f(x) returns the same value both times!

Type Narrowing of Function Calls

const f = (x: bigint): string | bigint => …;

const y = f(x);
if (typeof y === “bigint”) {
 console.log(isPrime(y)) // this works now
}

• TypeScript can see that the two values are the same

• Functions that return different values for the same
inputs are confusing!
– maybe better to avoid that

Compound Types In Math

• Compound types combine multiple data types
– multiple ways build them

• Record Types {x	:	ℕ,		y	:	ℕ}
– record with fields “x” and “y” each containing a number
– e.g., {x:	3,	y:	5}

• Note that {x:	3,	y:	5}	=	{y:	5,	x:	3} in math
– field names matter, not order
– note that these are not "==" in JavaScript

in math, “=“ means same values
in JavaScript, "==" is reference equality

Record Types in TypeScript

• Record Types {x: bigint, y: bigint}
– anything with at least fields “x” and “y”

• Retrieve a part by name:

const t: {x: bigint, y: bigint} = … ;
console.log(t.x);

Optional Fields in TypeScript

• Records can have optional fields

type T = {x: bigint, y?: bigint};

const t: T = {x: 1n};

– type of “ t.y ” is “ bigint | undefined ”

• Functions can have optional arguments

const f = (a: bigint, b?: bigint): bigint => {
 console.log(b);

};

– type of “ b ” is “ bigint | undefined ”

Compound Types In Math

• Record Types {x	:	ℕ,		y	:	ℕ}
– record with fields “x” and “y” each containing a number
– e.g., {x:	3,	y:	5}

• Tuple Types ℕ ⨉ ℕ
– pair of two natural numbers, e.g., (5,	7)
– can do tuples of 3, 4, or more elements also

• Mostly equivalent alternatives
– both let us put parts together into a larger object
– record distinguishes parts by name
– tuple distinguishes parts by order

Retrieving Part of a Tuple

• To refer to tuple parts, we must give them names

• Tuple Types ℕ ⨉ ℕ

Let	(a,	b)	:=	t. Suppose we know that t	=	(5,	7)

 Then, we have a	=	5 and b	=	7

• Tuple Types [bigint, bigint]

const t: [bigint, bigint] = …;
const [a, b] = t;
console.log(a); // first part of t

“:=” means a definition

Simple Functions in Math

• Simplest function definitions are single expressions

• Will write them in math like this:

	 double	:	ℕ	→	ℕ

	 double(n)	:=	2n

– first line declares the type of double function
takes a natural number input to a natural number output

– second line shows the calculation
know that "n" is a natural number from the first line

– will often put the type in the text before the definition, e.g.,
The	function	double	:	ℕ	→	ℕ	is	defined	by…

	 double(n)	:=	2n

Simple Functions in Math

• Another example:

	 dist	:	{x:	ℝ,	y:	ℝ}	→	ℝ

	 dist(p)	:=	(p.x2	+	p.y2)1/2

– first line tells us that "p" is a record and "p.x" is a real number

• Can define short-hand for types in math also

	 type	Point	:=	{x:	ℝ,	y:	ℝ}

	 dist	:	Point	→	ℝ
	 dist(p)	:=	(p.x2	+	p.y2)1/2

Complex Functions in Math

• Most interesting functions are not simple expressions
– need to use different expressions in different cases

• Can use side-conditions to split into cases

								 	 abs	:	ℝ	→	ℝ
	 	 abs(x)	:=	x	 	 	 if	x	≥	0
	 	 abs(x)	:=	–x	 	 	 if	x	<	0

– conditions must be exclusive and exhaustive
we do not want to require on order to determine which applies

– there is a better way to do this in many cases…

Pattern Matching

• Can also define functions by “pattern matching”

	 	 double	:	ℕ	→	ℕ
	 	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2

– first case matches only 0
– second case matches numbers 1 more than some n	:	ℕ	…

double(6) = double(5+1) so it matches with n = 5
since n	≥ 0, we have n+1 ≥	1, so it matches 1, 2, 3, …

– pattern “n+2” would match 2,	3,	4,	…

• Simplifies the math in multiple ways…

Pattern Matching on Natural Numbers

• Pattern matching definition

						 	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2

 is simpler than using side conditions

	 	 double(n)	 :=	0		 	 	 	 if	n	=	0
	 	 double(n)	 :=	double(n-1)	+	2	 if	n	>	0

– e.g., need to explain why double(n-1) is legal
easy in this case, but it gets harder

• We will prefer pattern matching whenever possible

Pattern Matching on Booleans

• Booleans have only two legal values: T and F

• Can pattern match just by listing the values:
– the function not	:	𝔹	→	𝔹 is defined as follows:

	 	 not(T)	:=	F
	 	 not(F)	:=	T

– negates a boolean value
– no simpler way to define this function!

Pattern Matching on Records

• Can pattern match on individual fields of a record

							type	 Steps	:=	{n	:	ℕ,	fwd	:	𝔹}

	 change	:	Steps	→	ℕ
	 change({n:	m,	fwd:	T})	:=	m
	 change({n:	m,	fwd:	F})	:=	–m

– clear that the rules are exclusive and exhaustive

• Can match on multiple parameters
– e.g., change({n:	m+5,	fwd:	T})	:=	2m
– just make sure the rules are exclusive and exhaustive

Pattern Matching in TypeScript

• TypeScript does not provide pattern matching
– some other languages do! (see 341)

• We must translate into “if”s on our own

type Steps = {n: number, fwd: boolean};

const change = (s: Steps) => {
 if (s.fwd) {
 return s.n;
 } else {
 return –s.n;
 }

};

still straight from the spec
but easy to make mistakes

Pattern Matching in TypeScript

	 double(0)	 :=	0
	 	 double(n+1)	 :=	double(n)	+	2

• Also need to be careful with natural numbers

// m is non-negative
const double = (m: bigint) => {
 if (m === 0n) {
 return 0n;
 } else {
 return double(m – 1n) + 2n;
 }

};

– pattern matching uses “n+1” but the code uses “m” (or “n”)
sadly, TypeScript will not let “n+1” be the argument value

spec says double(n)
but code says double(m – 1)

Code Without Mutation

• Saw all types of code without mutation:
– straight-line code
– conditionals
– recursion

• This is all that there is!
– can write anything computable with just these

• Saw TypeScript syntax for these already…

Code Without Mutation

Example function with all three types

 // n must be a non-negative integer
 const f = (m: bigint): bigint => {
 if (m === 0n) {
 return 1n;
 } else {
 const n = m – 1n;
 return 2n * f(n);
 }
 };

What does this compute?

f(m)	=	2m

f	:	ℕ	→	ℕ

f(0)		 :=	1
f(n+1)	 :=	2	·	f(n)

Inductive Data Types

Inductive Data Types

• Previous saw records, tuples, and unions
– very useful but limited

can only create types that are “small” in some sense

– missing one more way of defining types
arguably the most important

• One critical element is missing: recursion
Java classes can have fields of same type, but records cannot

• Inductive data types are defined recursively
– combine union with recursion

Inductive Data Types

• Describe a set by ways of creating its elements
– each is a “constructor”

type	T	:=		C(x	:	ℤ)		|		D(x	:	ℤ,		y	:	T)

– second constructor is recursive
– can have any number of arguments (even none)

will leave off the parentheses when there are none

• Examples of elements

C(1)
D(2,	C(1))
D(3,	D(2,	C(1)))

in math, these are not function calls

Inductive Data Types

• Each element is a description of how it was made

C(1)
D(2,	C(1))
D(3,	D(2,	C(1)))

• Equal when they were made exactly the same way

– C(1)	≠	C(2)
– D(2,	C(1))	≠	D(3,	C(1))
– D(2,	C(1))	≠	D(2,	C(2))

– D(1,	D(2,	C(3)))	=	D(1,	D(2,	C(3)))

Natural Numbers

 type	ℕ		:=		zero		|		succ(n	:	ℕ)

• Inductive definition of the natural numbers

zero		 	 	 	 	 	 	 0
succ(zero)	 	 	 	 	 	 1
succ(succ(zero))	 	 	 	 	 2
succ(succ(succ(zero)))		 	 	 3

The most basic set we have is defined inductively!

Even Natural Numbers

 type	𝔼	:=		zero		|		two-more(n	:	𝔼)

• Inductive definition of the even natural numbers

zero		 	 	 	 	 	 	 	 	 0
two-more(zero)	 	 	 	 	 	 	 2
two-more(two-more(zero))		 	 	 	 4
two-more(two-more(two-more(zero)))	 	 6

much better notation

	 	 	 type	List		:=		nil		|		cons(x	:	ℤ,		L	:	List)

• Inductive definition of lists of integers

nil	 	 	 	 	 	 	 	
cons(3,	nil)	 	 	 	 	 	
cons(2,	cons(3,	nil))	 	 	 	
cons(1,	cons(2,	cons(3,	nil)))	 	

Lists

1 2 3

	 	 	 type	List		:=		nil		|		cons(x	:	ℤ,		L	:	List)

• We will use:
– "x	::	L" to mean "cons(x,	L)"
– "[1,	2,	3]" to mean "1	::	2	::	3	::	nil"

• Examples:

nil	 	 	 	 	 	 	 	 nil	 	 	 	 	 []
cons(3,	nil)	 	 	 	 	 	 3	::	nil	 	 	 	 [3]
cons(2,	cons(3,	nil))	 	 	 	 2	::	3	::	nil	 	 	 [2,	3]
cons(1,	cons(2,	cons(3,	nil)))	 	 1	::	2	::	3	::	nil	 	 	 [1,	2,	3]

Shorthand Notation for Lists

Inductive Data Types in TypeScript

• TypeScript does not natively support inductive types
– some “functional” languages do (e.g., OCaml and ML)

• We must think of a way to cobble them together…
– our answer is a design pattern…

Design Patterns

• Introduced in the book of that name
– written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides

– worked in C++ and SmallTalk

• Found that they independently developed
many of the same solutions to recurring problems
– wrote a book about them

• Many are problems with OO languages
– authors worked in C++ and SmallTalk
– some things are not easy to do in those languages

Type Narrowing with Records

• Use a literal field to distinguish records types
– require the field to have one specific value
– called a “tag” field

cleanest way to make unions of records

type T1 = {kind: "T1", a: bigint, b: number};
type T2 = {kind: "T2" a: bigint, b: string};

const x: T1 | T2 = …;
if (x.kind === "T1") { // legal for either type
 console.log(x.b); // must be T1… x.b is a number
} else {
 console.log(x.b); // must be T2… x.b is a string
}

Inductive Data Type Design Pattern

type	T		:=		C(x	:	ℤ)		|	D(x	:	𝕊*	,	t	:	T)

• Implement in TypeScript as

type T = {kind: "C", x: number}
 | {kind: "D", x: string, t: T};

Inductive Data Type Design Pattern

type	T		:=		A		|		B		|		C(x	:	ℤ)		|	D(x	:	𝕊*,	t	:	T)

• Implement in TypeScript as

type T = {kind: "A"}
 | {kind: "B"}
 | {kind: "C", x: bigint}
 | {kind: "D", x: string, t: T};

Inductive Data Types in TypeScript

type	List		:=		nil		|		cons(x	:	ℤ,		L	:	List)

• Implemented in TypeScript as

type List = {kind: "nil"}
 | {kind: "cons", hd: bigint, tl: List};

• How do I check if my list is empty?

if (mylist.kind === "nil") {
 …

}

Inductive Data Types in TypeScript

• Make this look more like math notation…

type List = {kind: "nil"}
 | {kind: "cons", hd: bigint, tl: List};

const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => {
 return {kind: "cons", hd: hd, tl: tl};
}

– use only these two functions to create Lists
do not create the records directly

– note that we only have one instance of nil
this is called a “singleton” (there is a design pattern for ensuring this)

Inductive Data Types in TypeScript

• Make this look more like math notation…

const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => { .. };

• Can now write code like this:

const L: List = cons(1, cons(2, nil));

Inductive Data Types in TypeScript

• Make this look more like math notation…

const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => { .. };

• Still not perfect:
– JS “===” (references to same object) does not match “=”

cons(1, cons(2, nil)) === cons(1, cons(2, nil)) // false!

– need to define an equal function for this
will see this later…

Functions Defined on Inductive Data Types

• We need recursion to define interesting functions
– we will primarily use structural recursion

• Inductive types fit esp. well with pattern matching
– every object is created using some constructor
– match based on which constructor was used

Length of a List

	 type	List	:=		nil		|		cons(hd:	ℤ,	tl:	List)

• Mathematical definition of list length:

len	:	List	→	ℕ	

len(nil)	 :=		0
len(x	::	L)	 :=		1	+	len(L)	

– any list is either nil or x	::	L for some x and L
– cases are exclusive and exhaustive

Length of a List

• Mathematical definition of length

 	 	len(nil) :=		0
	 	 	len(x	::	L)	 :=		1	+	len(L)
	 	 	 	 	 	 	 	 	

• Translation to TypeScript

const len = (S: List): bigint => {
 if (S.kind === "nil") {
 return 0n;
 } else {
 return 1n + len(S.tl);
 }

}; TypeScript will see that this is valid
since S.kind != "nil"

Swapping Elements in a List

	 type	List	:=		nil		|		cons(hd:	ℤ,	tl:	List)

• Function that swaps adjacent elements in a list:

swap	:	List	→	List	

swap(nil)	 	 :=		nil
swap(x	::	nil)	 :=		x	::	nil
swap(x	::	y	::	L)	 :=		y	::	x	::	swap(L)

– any list is either nil or x	::	nil or x	::	y	::	L for some x,	y and L
– cases are exclusive and exhaustive

Swapping Elements in a List

swap(nil)	 	 :=		nil
swap(x	::	nil)	 :=		x	::	nil
swap(x	::	y	::	L)	 :=		y	::	x	::	swap(L)

	 	 	 	 	 	 	 	 	

• Translation to TypeScript

const swap = (S: List): bigint => {
 if (S.kind === "nil") {
 return nil;
 } else if (S.tl.kind === "nil") {
 return cons(S.hd, nil);
 } else {
 return cons(S.tl.hd, S.hd, swap(S.tl.tl));
 }

};

=	S

TypeScript will see that these are valid since
S.kind != "nil" and S.tl.kind != "nil"

Structural Recursion

• Examples only recurse on parts of the input

	 len(x	::	L)		:=		1	+	len(L)

– call on x	::	L recurses on L

	 swap(x	::	y	::	L)		:=		y	::	x	::	swap(L)

– call on x	::	y	::	L recurses on L
– such cases are called "structural recursion"

• Guarantees no infinite recursion!
– one argument gets strictly smaller on each call
– restrict ourselves to structural recursion in math and TS

Formalizing Specifications

Formalizing a Specification

• Sometimes the instructions are written in English
– English is often imprecise or ambiguous

• First step then is to “formalize” the specification:
– translate it into math with a precise meaning

• Best to start by looking at some examples
– try to spot a pattern
– that usually indicates recursion

Definition of Sum of Values in a List

• Sum of a List: “add up all the values in the list”

• Look at some examples…

L	 	 	 	 	 	 	 sum(L)
nil	 	 	 	 	 	 	 0
3	::	nil	 	 	 	 	 	 3
2	::	3	::	nil	 	 	 	 	 2+3
1	::	2	::	3	::	nil	 	 	 	 	 1+2+3
…	 	 	 	 	 	 	 …

Definition of Sum of Values in a List

• Look at some examples…

L	 	 	 	 	 	 	 sum(L)
nil	 	 	 	 	 	 	 0
3	::	nil	 	 	 	 	 	 3
2	::	3	::	nil	 	 	 	 	 2+3
1	::	2	::	3	::	nil	 	 	 	 	 1+2+3
…	 	 	 	 	 	 	 …

• Mathematical definition of sum:

sum(nil)		 :=		
sum(x	::	L)	 :=		

Definition of Sum of Values in a List

L	 	 	 	 	 	 	 sum(L)
1	::	2	::	3	::	nil	 	 	 	 	 1+2+3

• Mathematical definition of sum:

sum(nil)		 :=		0
sum(x	::	L)	 :=		x	+	sum(L)

• Check that this works on the examples…

sum(1	::	2	::	3	::	nil)
		=	1	+	sum(2	::	3	::	nil)		 	 	 	 def	of	sum	(2nd	line)
		=	1	+	2	+	sum(3	::	nil)	 	 	 	 def	of	sum	(2nd	line)
		=	1	+	2	+	3	+	sum(nil)	 	 	 	 def	of	sum	(2nd	line)
		=	1	+	2	+	3	 	 	 	 	 	 	 def	of	sum	(1st	line)

Sum of Values in a List

• Mathematical definition of sum

	 sum(nil)		 :=		0
	 sum(x	::	L)	 :=		x	+	sum(L)
	

• Translation to TypeScript

const sum = (L: List): bigint => {
 if (L.kind === “nil”) {
 return 0n;
 } else {
 return L.hd + sum(L.tl);
 }

};

Definition of List Equality

• Equal lists: “built with same steps”

• Look at some examples…

L	 	 	 	 R	 	 	 equal(L,	R)
nil	 	 	 	 nil	 	 	
nil	 	 	 	 1	::	nil	 	
1	::	nil	 	 	 nil	 	 	
1	::	nil	 	 	 1	::	nil	 	
1	::	nil	 	 	 2	::	nil	 	
1	::	2	::	nil	 	 1	::	3	::	nil	

Definition of List Equality

L	 	 	 	 R	 	 	 equal(L,	R)
nil	 	 	 	 nil	 	 	 T
nil	 	 	 	 1	::	nil	 	 F
1	::	nil	 	 	 nil	 	 	 F
1	::	nil	 	 	 1	::	nil	 	 T
1	::	nil	 	 	 2	::	nil	 	 F
1	::	2	::	nil	 	 1	::	3	::	nil	 F

• Mathematical definition of equal	:	(List,	List)	→	𝔹

equal(nil,	nil)	 	 :=	T
equal(nil,	y	::	R)	 :=	F
equal(x	::	L,	nil)		 :=	F
equal(x	::	L,	y	::	R)	 :=	(x	=	y)	and	equal(L,	R)

Definition of Sum of Values in a List

L	 	 	 	 R	 	 	 equal(L,	R)
1	::	2	::	nil	 	 1	::	3	::	nil	 F

• Mathematical definition of equal	:	(List,	List)	→	𝔹

equal(nil,	nil)	 	 :=	T
equal(nil,	y	::	R)	 :=	F
equal(x	::	L,	nil)		 :=	F
equal(x	::	L,	y	::	R)	 :=	(x	=	y)	and	equal(L,	R)

• Check that this works on the examples…

equal(1	::	2	::	nil,	1	::	3	::	nil)
		=	(1	=	2)	and	equal(2	::	nil,	3	::	nil)	 	 	 def	of	equal	(4th	line)
		=	(1	=	2)	and	(2	=	3)	and	equal(nil,	nil)	 	 def	of	equal	(4th	line)
	 =	T	and	T	and	F	 	 	 	 	 	 	 def	of	equal	(1st	line)

Inductive Data Types in TypeScript

• Translation to TypeScript

type List = {kind: "nil"}
 | {kind: "cons", hd: bigint, tl: List};

const equal = (L: List, R: List): boolean => {
 if (L.kind === "nil") {
 return R.kind === "nil";
 } else {
 if (R.kind === "nil") {
 return false;
 } else {
 return L.hd === R.hd && equal(L.tl, R.tl);
 }
 }

}; math definition may be easier to read

Definition of List Concatenation

• Concatenate L and R: “list containing
 the elements of L followed by the elements of R”

• Look at some examples…

L	 	 	 	 R	 	 	 concat(L,	R)
nil	 	 	 	 nil	 	 	 nil
nil	 	 	 	 3	::	nil	 	 3	::	nil
1	::	nil	 	 	 3	::	nil	 	 1	::	3	::	nil
1	::	2	::	nil	 	 3	::	nil	 	 1	::	2	::	3	::	nil
1	::	2	::	nil	 	 3	::	4	::	nil	 1	::	2	::	3	::	4	::	nil
…

Definition of List Concatenation

L	 	 	 	 R	 	 	 concat(L,	R)
nil	 	 	 	 nil	 	 	 nil
nil	 	 	 	 3	::	nil	 	 3	::	nil
1	::	nil	 	 	 3	::	nil	 	 1	::	3	::	nil
1	::	2	::	nil	 	 3	::	nil	 	 1	::	2	::	3	::	nil
1	::	2	::	nil	 	 3	::	4	::	nil	 1	::	2	::	3	::	4	::	nil

• Mathematical definition of concat	:	(List,	List)	→	List

concat(nil,	R)	 	 :=	R
concat(x	::	L,	R)		 :=	x	::	concat(L,	R)

Definition of List Concatenation

1	::	2	::	nil	 	 3	::	4	::	nil	 1	::	2	::	3	::	4	::	nil

• Mathematical definition of concat	:	(List,	List)	→	List

concat(nil,	R)	 	 :=	R
concat(x	::	L,	R)		 :=	x	::	concat(L,	R)

• Check that this matches examples…

concat(1	::	2	::	nil,	3	::	4	::	nil)
		=	1	::	concat(2	::	nil,	3	::	4	::	nil)		 	 	 def	of	concat	(2nd	line)
		=	1	::	2	::	concat(nil,	3	::	4	::	nil)		 	 	 def	of	concat	(2nd	line)
		=	1	::	2	::	3	::	4	::	nil	 	 	 	 	 	 def	of	concat	(1st	line)

Definition of List Concatenation

• Mathematical definition of concat	:	(List,	List)	→	List

concat(nil,	R)	 	 :=	R
concat(x	::	L,	R)		 :=	x	::	concat(L,	R)

• Translation to TypeScript

const concat = (L: List, R: List): List => {
 if (L.kind === "nil") {
 return R;
 } else {
 return cons(L.hd, concat(L.tl, R));
 }

};

Notes on Lists Posted on the Website

• Shorter version of everything we've discussed

• In addition:
1. Defines a few more useful list functions
2. Mentions important properties of concat:

– operator notation "⧺"
– associativity and identity

3. Mentions important applications of lists
– maps are lists of (key, value) pairs
– sets can be defined defined as lists

• Lists are our most important data type!

Definition of List Reversal

• Reversal of a List: “same values but in reverse order”

• Look at some examples…

L	 	 	 	 	 	 rev(L)
nil	 	 	 	 	 	 nil
[3]	 	 	 	 	 	 [3]	 	 	 	 	 	 3	::	nil
[2,	3]	 	 	 	 	 [3,	2]	 	 	 	 	 3	::	2	::	nil
[1,	2,	3]	 	 	 	 	 [3,	2,	1]	 	 	 	 	 3	::	2	::	1	::	nil
…	 	 	 	 	 	 …

Definition of List Reversal

• Look at some examples…

L	 	 	 	 	 	 	 rev(L)
nil	 	 	 	 	 	 	 nil
3	::	nil	 	 	 	 	 	 3	::	nil
2	::	3	::	nil	 	 	 	 	 3	::	2	::	nil
1	::	2	::	3	::	nil	 	 	 	 	 3	::	2	::	1	::	nil

• Where does rev([2,	3]) show up in rev([1,	2,	3])?
– at the beginning, with 1	::	nil after it

• Where does rev([3]) show up in rev([2,	3])?
– at the beginning, with 2	::	nil after it

Definition of List Reversal

1	::	2	::	3	::	nil	 	 	 	 	 3	::	2	::	1	::	nil

• Mathematical definition of rev	:	List	→	List

rev(nil)	 :=	nil
rev(x	::	L)	 :=	rev(L)	⧺	(x	::	nil)

• Check that this matches examples…

rev(1	::	2	::	3	::	nil)
		=	rev(2	::	3	::	nil)	⧺	[1]	 	 	 	 def	of	rev
		=	rev(3	::	nil)	⧺	[2]	⧺	[1]	 	 	 	 def	of	rev
		=	rev(nil)	⧺	[3]	⧺	[2]	⧺	[1]	 	 	 def	of	rev
		=	[]	⧺	[3]	⧺	[2]	⧺	[1]	 	 	 	 	 def	of	rev
		=	…	=	[3,	2,	1]	 	 	 	 	 	 def	of	concat	(many	times)

Reversing A Lists

• Mathematical definition of rev	:	List	→	List

rev(nil)	 :=	nil
rev(x	::	L)	 :=	rev(L)	⧺	(x	::	nil)

• Other definitions are possible, but this is simplest

• Always make definitions as simple as possible

Formalizing a Specification

• Sometimes the instructions are written in English
– English is often imprecise or ambiguous

• First step then is to “formalize” the specification:
– translate it into math with a precise meaning

• How do we tell if the specification is wrong?
– specifications can contain bugs!

Is it obvious that equal, concat, & rev are correct? Maybe not.

• We can test our definition on some examples
– what can we do to increase the odds we spot bugs?

