
Client-Server Interaction
Kevin Zatloukal

CSE 331

Steps to Writing a Full Stack App

• Data stored only in the client is generally ephemeral
– closing the window means you lose it forever
– to store it permanently, we need a server

• We recommend writing in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Steps to Writing a Full Stack App

• We recommend writing in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Designing the Server

• Decide what state you want to be permanent
– e.g., items on the To-Do list

• Decide what operations the client needs
– e.g., add/remove from the list, mark an item completed

look at the client code to see how the list changes
each way of changing the list becomes an operation

– also need a way to get the list initially
– only provide those operations

can always add more operations later

Example: To-Do List Server

Steps to Writing a Full Stack App

• We recommend writing in the following order:

1. Write the client UI with local data
– no client/server interaction at the start

2. Write the server
– official store of the data (client state is ephemeral)

3. Connect the client to the server
– use fetch to update data on the server before doing same to client

Recall: Client-Server Interaction

• Clients need to talk to server & update UI in response

GET /api/list

current to-do list

our server

Client will make requests to the server to
– get the list
– add, remove, and complete items

Development Setup

• Two servers: ours and webpack-dev-server

GET /api/list

response

our server

webpack-dev-server

webpack-dev-server
will forward all requests
to /api/… to our server

8088

8080

Only one server can
run on each port

(Attempting to start
a second will see a
EADDRINUSE error)

Recall: Client-Server Interaction

• Clients need to talk to server & update UI in response

Components give us the ability to update the UI
when we get new data from the server (an event)

How does the client make requests to the server?

GET /api/list

current to-do list

our server

Fetch Requests Are Complicated

• Four different methods involved in each fetch:

1. method that makes the fetch
2. handler for fetch Response
3. handler for fetched JSON
4. handler for errors

fetch status code

response data

error messagedoListResp

doListError

doListJsonconnect

200

400

Making HTTP Requests

• Send & receive data from the server with “fetch”

fetch(“/api/list”)
 .then(this.doListResp)
 .catch(() => this.doListError(“failed to connect”))

• Fetch returns a “promise” object
– has .then & .catch methods
– both methods return the object again
– above is equivalent to:

const p = fetch(“/api/list”);
p.then(this.doListResp);
p.catch(() => this.doListError(“failed to connect”));

Making HTTP Requests

• Send & receive data from the server with “fetch”

fetch(“/api/list”)
 .then(this.doListResp)
 .catch(() => this.doListError(“failed to connect”))

– then handler is called if the request can be made
– catch handler is called if it cannot be

only if it could not connect to the server at all
status 400 still calls then handler

– catch is also called if then handler throws an exception

Making HTTP Requests

• Send & receive data from the server with “fetch”

const url = “/api/list?” +
 “category=” + encodeURIComponent(category);
fetch(url)
 .then(this.doListResp)
 .catch(() => this.doListError(“failed to connect”))

• All query parameter values are strings
• Some characters are not allowed in URLs

– the encodeURIComponent function converts to legal chars
– server will automatically decode these (in req.query)

in example above, req.query.name will be “laundry”

Making HTTP Requests

• Still need to check for a 200 status code

doListResp = (res: Response): void => {
 if (res.status === 200) {
 console.log(“it worked!”);

 } else {
 this.doListError(`bad status ${res.status}`);
 }

};

doListError = (msg: string) => {
 console.log(“fetch of /list failed: ${msg}”);

};

– (often need to tell users about errors with some UI…)

Handling HTTP Responses

• Response has methods to ask for response data
– our doListResp called once browser has status code
– may be a while before it has all response data (could be GBs)

• With our conventions, status code indicates data type:
– with 200 status code, use res.json() to get record

we always send records for normal responses

– with 400 status code, use res.text() to get error message
we always send strings for error responses

• These methods return a promise of response data
– use .then(..) to add a handler that is called with the data
– handler .catch(..) called if it fails to parse

Making HTTP Requests

doListResp = (res: Response): void => {
 if (res.status === 200) {
 res.json().then(this.doListJson);
 .catch(() => this.doListError(“not JSON”);
 } …
 …

};

• Second promise can also fail
– e.g., fails to parse as valid JSON, fails to download

• Important to catch every error
– painful debugging if an error occurs and you don’t see it!

Making HTTP Requests

doListResp = (res: Response): void => {
 if (res.status === 200) {
 res.json().then(this.doListJson);
 .catch(() => this.doListError(“not JSON”);
 } else if (res.status === 400) {
 res.text().then(this.doListError);
 .catch(() => this.doListError(“not text”);
 } else {
 this.doListError(`bad status: ${res.status}`);
 }
};

• We know 400 response comes with an error message
– could also be large, so res.text() also returns a promise

Fetch Requests Are Complicated

• Four different methods involved in each fetch:

1. method that makes the fetch
2. handler for fetch Response
3. handler for fetched JSON
4. handler for errors

fetch status code

response data

error messagedoListResp

doListError

doListJsonconnect

200

400

Fetch Requests Are Complicated

• Four different methods involved in each fetch:

1. method that makes the fetch
2. handler for fetch Response e.g., doListResp
3. handler for fetched JSON e.g., doListJson
4. handler for errors e.g., doListError

• Three different events involved:
– getting status code, parsing JSON, parsing text
– any of those can fail!

important to make all error cases visible

Recall: HTTP GET vs POST

• When you type in a URL, browser makes “GET” request
– request to read something from the server

• Clients often want to write to the server also
– this is typically done with a “POST” request

ensure writes don’t happen just by normal browsing

• POST requests also send data to the server in body
– GET only sends data via query parameters
– limited to a few kilobytes of data
– POST requests can send arbitrary amounts of data

Making HTTP POST Requests

• Extra parameter to fetch for additional options:

fetch(”/add”, {method: ”POST”})

• Arguments then passed in body as JSON

const args = {name: “laundry”};
fetch(”/add”, {method: ”POST”,
 body: JSON.stringify(args),
 headers: {“Content-Type”: “application/json”}})

 .then(this.doAddResp)
 .catch(() => this.doAddError(“failed to connect”))

– add as many fields as you want in args
– Content-Type tells the server we sent data in JSON format

Lifecycle Methods

• React also includes events about its “life cycle”
– componentDidMount: UI is now on the screen
– componentDidUpdate: UI was just changed to match render
– componentWillUnmount: UI is about to go away

• Often use “mount” to get initial data from the server
– constructor shouldn’t do that sort of thing

componentDidMount = (): void => {
 fetch(“/api/list”)
 .then(this.doListResp)
 .catch(() => this.doListError(“connect failed”);
};

Lifecycle Events

• Warning: React doesn’t unmount when props change
– instead, it calls componentDidUpdate and re-renders

– you can detect a props change there

componentDidUpdate =
 (prevProps: HiProps, prevState: HiState): void => {
 if (this.props.name !== prevProps.name) {
 … // our props were changed!
 }
};

Example: To-Do List 2.0

Recall: (Old) TodoApp – Add Click

// Called when the user clicks on the button to add the new item.
doAddClick = (_: MouseEvent<HTMLButtonElement>): void => {
 // Ignore the request if the user hasn't entered a name.
 const name = this.state.newName.trim();
 if (name.length == 0)
 return;

 // Cannot mutate this.state.items! Must make a new array.
 const items = this.state.items.concat(
 [{name: name, completed: false}]);

 this.setState({items: items, newName: ""}); // clear input box
};

New TodoApp – Add Click

// Called when the user clicks on the button to add the new item.
doAddClick = (_: MouseEvent<HTMLButtonElement>): void => {
 // Ignore the request if the user hasn't entered a name.
 const name = this.state.newName.trim();
 if (name.length == 0)
 return;

 // Ask the server to add the new item.
 const args = {name: name};
 fetch("/api/add", {

 method: "POST", body: JSON.stringify(args),

 headers: {"Content-Type": "application/json"} })

 .then(this.doAddResp)
 .catch(() => this.doAddError("failed to connect to server"));
};

New TodoApp – Add Response & Error

// Called when the server confirms that the item was added.
doAddResp = (res: Response): void => {
 if (res.status === 200) {
 res.json().then(this.doAddJson)
 .catch(() => this.doAddError(”200 response is not JSON"));
 } else if (res.status === 400) {
 res.text().then(this.doAddError)
 .catch(() => this.doAddError(”400 response is not text"));
 } else {
 this.doAddError(`bad status code ${res.status}`);
 }

};

// Called when we fail trying to add an item
doAddError = (msg: string): void => {
 console.error(`Error fetching /add: ${msg}`);
};

New TodoApp – Add Json

// Called with the JSON response from /api/add
doAddJson = (data: unknown): void => {
 if (!isRecord(data)) {
 console.error("bad data from /add: not a record", data);

 return;
 }

 if (typeof data.name !== 'string') {
 console.error("bad data from /add: name missing / wrong", data);
 return;
 }

 // Now that we know it was added, we can update the UI.
 const items = this.state.items.concat(
 [{name: data.name, completed: false}]);

 this.setState({items: items, newName: ""}); // clear input box
};

Recall: (Old) TodoApp – Item Clicked

// Called when the user checks the box next to an uncompleted item.
// The second parameter is the index of that item in the list.
doItemClick =
 (_: ChangeEvent<HTMLInputElement>, index: number): void => {
 const item = this.state.items[index];

 // Note: we cannot mutate the list. We must create a new one.
 const items = this.state.items.slice(0, index) // 0 .. index-1
 .concat([{name: item.name, completed: true}])
 .concat(this.state.items.slice(index + 1)); // index+1 ..
 this.setState({items: items});
};

New TodoApp – Item Clicked

// Called when the user checks the box next to an uncompleted item.
// The second parameter is the index of that item in the list.
doItemClick =
 (_: ChangeEvent<HTMLInputElement>, index: number): void => {
 const item = this.state.items[index];

 const args = {name: item.name};
 fetch("/api/complete", {
 method: "POST", body: JSON.stringify(args),
 headers: {"Content-Type": "application/json"} })

 .then((res) => this.doCompleteResp(res, index))
 .catch(() => this.doCompleteError("failed to connect"))
};

– passing index as an extra argument
– we’ll need it later…

New TodoApp – Item Clicked

// Called when the server confirms that the item was completed.
doCompleteResp = (res: Response, index: number): void => {
 if (res.status === 200) {
 res.json().then((data) => this.doCompleteJson(data, index))
 .catch(() => this.doCompleteError(”200 response is not JSON"));
 } else if (res.status === 400) {
 res.text().then(this.doCompleteError)
 .catch(() => this.doCompleteError(”400 response is not text"));
 } else {
 this.doCompleteError(`bad status code ${res.status}`);
 }

};

– passing index as an extra argument

New TodoApp – Item Clicked

// Called with the JSON response from /api/complete
doCompleteJson = (data: unknown, index: number): void => {
 if (!isRecord(data)) {
 console.error("bad data from /complete: not a record", data)

 return;
 }
 // Nothing useful in the response itself…

 // Note: we cannot mutate the list. We must create a new one.
 const item = this.state.items[index];
 const items = this.state.items.slice(0, index) // 0 .. index-1
 .concat([{name: item.name, completed: true}])

 .concat(this.state.items.slice(index + 1)); // index+1 ..
 this.setState({items: items});

 // Refresh our list after this item has been removed.
 setTimeout(this.doRefreshTimeout, 5100);
};

One More Change

• Don’t have the items initially…

type TodoState = {
 items: Item[] | undefined; // items or undefined if loading
 newName: string; // mirrors text in name-to-add field
};

renderItems = (): JSX.Element => {
 if (this.state.items === undefined) {
 return <p>Loading To-Do list...</p>;
 } else {
 const items = [];
 // … old code to fill in array with one DIV per item …
 return <div>{items}</div>;
 }
};

New TodoApp — Requests

Another JavaScript Feature: for … of

for (const item of val)

• “for .. of” iterates through array elements in order
– ... or the entries of a Map or the values of a Set

entries of a Map are (key, value) pairs

– like Java's "for (… : …)"
– fine to use these

Recall: Fetch Requests Are Complicated

• Four different methods involved in each fetch:

1. method that makes the fetch
2. handler for fetch Response
3. handler for fetched JSON
4. handler for errors

fetch status code

response data

error messagedoListResp

doListError

doListJsonconnect

200

400

Recall: Lifecycle Methods

• React also includes events about its “life cycle”
– componentDidMount: UI is now on the screen
– componentDidUpdate: UI was just changed to match render
– componentWillUnmount: UI is about to go away

• Often use “mount” to get initial data from the server
– constructor shouldn’t do that sort of thing

componentDidMount = (): void => {
 const p = fetch(“/api/list”);
 p.then(this.doListResp);
 p.catch(() => this.doListError(“connect failed”);
};

Recall: Function Literals

• We used function literals for error handlers

componentDidMount = (): void => {
 const p = fetch(“/api/list”);
 p.then(this.doListResp);
 p.catch(() => this.doListError(“connect failed”);
};

• Our coding convention:
– one-line functions (no {..}) can be written in place

most often used to fill in or add extra arguments in function calls

– longer functions need to be declared normally

Lifecycle Events

• Warning: React doesn’t unmount when props change
– instead, it calls componentDidUpdate and re-renders

– you can detect a props change there

componentDidUpdate =
 (prevProps: HiProps, prevState: HiState): void => {
 if (this.props.name !== prevProps.name) {
 … // our props were changed!
 }
};

This is used in HW2 in Editor.tsx:
• changes to marker cause an

update to name and color state

Debugging Client-Server

Writing the Server

• Full-stack apps introduce new ways of failing
– can fail in the client due to a bug in the server
– can fail in the server due to a bug in the client

• Debugging a full-stack app is much harder
– requires understanding client, server, & interactions
– will take more time…

“Engineers are paid to think and understand.”
— Class slogan #1

Client-Server Debugging

serverclient

doAddClick
– fetch /api/add

express
– find route

addItem
– check parameters
– send {added: true}

doAddJson
– check response
– update state

Client-Server Communication

• Client-server communication can fail in many ways
– almost always requires debugging

• Include all required .catch handlers
– at least log an error message

• Here are steps you can use when
– the client should have made a request
– but you don’t see the expected result afterward
– (will practice this in section next week!)

Client-Server Communication

1. Do you see the request in the Network tab?
– the client didn’t make the request

2. Does the request show a 404 status code?
– the URL is wrong (doesn’t match any app.get / app.post) or

the query parameters were not encoded properly

3. Does the request show a 400 status code?
– your server rejected the request as invalid
– look at the body of the response for the error message or

add console.log’s in the server to see what happened
– the request itself is shown in the Network tab

Client-Server Communication

4. Does the request show a 500 status code?
– the server crashed!
– look in the terminal where you started the server for a stack trace

5. Does the request say “pending” forever?
– your server forgot to call res.send to deliver a response

6. Look for an error message in browser Console
– if 1-5 don’t apply, then the client got back a response
– client should print an error message if it doesn’t like the response
– client crashing will show a stack trace

Dynamic Type Checking

New TodoApp – Add Json

doAddJson = (data: unknown): void => {
 … // how do we use data?
};

– type of returned data is unknown
– to be safe, we should write code to check that it looks right

check that the expected fields are present
check that the field values have the right types

– only turn off type checking if you love painful debugging!
otherwise, check types at runtime

Checking Types of Requests & Response

• All our 200 responses are records, so start here

if (!isRecord(data))
 throw new Error(`not a record: ${typeof data}`);

– the isRecord function is provided for you
– like built-in Array.isArray function

still need to check the type of each array element!

• Would be reasonable to log an error instead
– using console.error is probably easier for debugging

Checking Types of Requests & Response

• Fields of the record can have any types

if (typeof data.name !== ’string’) {
 throw new Error(
 `name is not a string: ${typeof data.name}`);
}

if (typeof data.amount !== ‘number’) {
 throw new Error(
 `amount is not a number: ${typeof data.amount}`);
}

TodoApp: processing /api/list JSON

// Called with the JSON response from /api/list
 doListJson = (data: unknown): void => {
 const items = parseListResponse(data);
 this.setState({items: items});
 };

– often useful to move this type checking to helper functions
we will may provide these for you in future assignments

– not part of the UI logic, so doesn’t belong it that file

TodoApp: parseListResponse

// Retrieve the items sent back by /api/list
 const parseListResponse = (data: unknown): Item[] => {
 if (!isRecord(data))
 throw new Error(“not a record: ${typeof data}`);

 return parseItems(data.items);
 };

– can only write "data.items" after we know it's a record
type checker will object otherwise
retrieving a field on undefined or null would crash

TodoApp: parseItems

const parseItems = (data: unknown): Item[] => {
 if (!Array.isArray(data))
 throw new Error(`not an array: ${typeof data}`);

 const items: Item[] = [];
 for (const item of data) {
 items.push(parseItem(item));
 }
 return items;
 };

TodoApp: parseItems

const parseItem = (data: unknown): Item[] => {
 if (!isRecord(data))
 throw new Error(`not an record: ${typeof data}`);

 if (typeof data.name !== "string")
 throw new Error(`name is not a string: ${typeof data.name}`);

 if (typeof data.completed !== "boolean")
 throw new Error(`not a boolean: ${typeof data.completed}`);

 return {name: data.name, completed: data.completed};
 };

Use Type Checking to Avoid Debugging

• Resist the temptation to skip checking types in JSON
– “easy is the path that leads to debugging”

• Query parameters also require checking:

const url = “/list?” +
 “category=” + encodeURIComponent(category);

– converting from a string back to JS data is also parsing
– can be a bug in encoding or parsing

Use Type Checking to Avoid Debugging

• Be careful of turning off type checking:

 resp.json().then(this.doAddJson)
 …

doAddJson = (data: TodoItem): void => {
 this.setState(
 {items: this.state.items.concat([data])});
};

– promises use “any” instead of “unknown”, so
TypeScript let you do this

imagine this debugging
when you make a mistake

Summary of HW2

• Number of bugs logged:
– average of 5.0 (median of 5)

• Average solution was 90 lines of code (prob an over-estimate)

– 1 bug every 18 lines of code
some of those "lines" are plain HTML… 1 bug every 16 is probably closer

– 1 bug per 20–70 is normal even for professionals

Summary of HW2

• Time spent per bug:
– average of 40 minutes per bug
– 20% more than 1 hour

• Long tail is making itself visible…

Summary of HW2

• Was the bug due to a disallowed mutation?
– students reported 'yes' for 10% of bugs
– such bugs took 22% longer to debug on average

• More than 5% had a mutation bug they didn't catch!
– those are just the ones I found
– that means it gets sent out to users

not just reputation damage… also painful debugging

Summary of HW2

• User reports the following bug:

"Sometimes, I can't click on one of the markers.
 Usually, it it works fine. But occasionally, you can't click on it."

• First step is to figure out how to reproduce it
– can't debug otherwise

wouldn't know that you've fixed the bug

– key reason why event-driven debugging is harder
command-line failure is instantly reproducible

– debugging a crash is easier than a non-crash!
crash comes with a stack trace (line of code with a failure)

Summary of HW2

• Eventually, you find a way to reproduce it
– no longer clickable after you move it very far away

• To debug, you must learn how App.tsx works
– markers are stored in some kind of tree
– searches the tree to find markers near the click

• To debug, you must learn how marker_tree.ts works
– internal tree nodes split into NW, NE, SE, SW regions
– marker was inserted into the correct region
– when you search for it, it's no longer in the right region

Recall: Binary Search Trees

• Consider the following tree
– searching for "4" proceeds as follows:

• Suppose someone changed "3" into "5"…

6

3

1 4

9

8

Recall: Binary Search Trees

• Suppose someone changed "3" into "5"…
– now this happens when we search for "4":

– It can no longer be found!
Doesn't crash. It's just not found.

– Problem doesn't occur on the line with the change

6

5

1 4

9

8

One "Solution" to HW2

type EditorState = {
 newMarker: Marker;

 …
};

doNameChange = (evt: ChangeEvent<…>): void => {
 this.state.newMarker.name = evt.target.value;
 this.setState({newName: evt.target.value});
};

doSaveClick = (evt: MouseEvent<…): void => {

 this.props.onSaveClick(newMarker.name, …);
};

already suspicious…
mutating this.state directly

One "Solution" to HW2

constructor(props) {
 super(props);

 this.state = {newMarker: this.props.marker, …};
}

doMoveToChange = (evt: ChangeEvent<…>): void => {
 const bldg = findBuildingByName(evt.target.value);
 newMarker.location = bldg.location;
 this.setState({moveTo: evt.target.value});
};

• Starting to get nervous…
– are we allowed to mutate that marker?
– no! that location is a key in a tree

Scary Bugs

• Do not fear crashes
– often no debugging at all

get a stack trace that tells you exactly where it went wrong

• Do fear unexpected mutation
– failure will give you no clue what went wrong

will take a long time to realize the BST invariant was violated by mutation

– bug could be almost anywhere in the code
anyone who mutates a Location could have caused it

– could take weeks to track it down

Aliasing

Heap State

• “Heap state” = still used after the call stack finishes
– after current function and those calling it all return
– state could be arrays or records

• Extra references to the objects are called "aliases"

• No different from before when immutable
– we don’t care who reads the data

• Vastly more complex when mutable…
– within an event-driven application
– creates the potential for failures far from bugs

Coupling

• High-quality code needs to be "modular"
– split into pieces that can be understood individually

• When not possible, pieces are "coupled"
– must understand both parts to understand each one

• Mutable heap state creates coupling
– all pieces must know who else has aliases
– all pieces must know who is allowed to mutate

• Coupling creates potential for painful debugging
– bugs in one piece can cause failures in another

Mutable Heap State

• “With great power, comes great responsibility”
– from Uncle Ben

• With aliases to mutable heap state:
– gain efficiency in some cases
– must keep track of every alias that could mutate that state

any alias, anywhere in the entire program could cause a bug

“Programmers overestimate the importance of efficiency
 and underestimate the difficulty of correctness.”

— Class slogan #2

Easy Ways to Stay Safe

1. Do not mutate heap state
– don’t need to think about aliasing at all
– any number of aliases is fine

2. Do not allow aliases…
– create the state in your constructor and don’t share it

class MyClass {
 vals: Array<string>;

 constructor() {
 this.vals = new Array(0); // only alias
 }
 …

Easy Ways to Stay Safe

2. Do not allow aliases
 (a) do not hand out aliases yourself

– return copies instead

class MyClass {
 // RI: vals is sorted
 vals: Array<string>;

 …

 values: (): Array<string> => {
 return this.vals; // unsafe!
 return this.vals.slice(0); // make a copy
 };

 …

Easy Ways to Stay Safe

2. Do not allow aliases
 (b) make a copy of anything you want to keep

– does not matter if the caller mutates the original

class MyClass {
 // RI: vals is sorted
 vals: Array<string>;

 …

 // @requires A is sorted
 constructor(A: Array<string>) {
 this.vals = A; // unsafe!
 this.vals = A.slice(0); // make a copy
 };

 …

Easy Ways to Stay Safe

1. Do not use mutable state
– don’t need to think about aliasing at all
– any number of aliases is fine

2. Do not allow aliases to mutable state
a) do not hand out aliases yourself
b) make a copy of anything you want to keep

• For 331, mutable aliasing across files is a bug!
– gives other parts the ability to break your code
– we will stick to these simple strategies for avoiding it

ensures only one reference to the object (no aliases)

Rules of Thumb

Client Side

1. Data is small
– anything on screen is O(1)

2. Aliasing is common
– UI design forces modules
– data is widely shared

Rule: avoid mutation
– create new values instead
– performance will be fine

Server Side

1. Data is large
– efficiency maters

2. Aliasing is avoidable
– you decide on modules
– data is not widely shared

Rule: avoid aliases
– do not allow aliases to your data
– hand out copies not aliases
– (good enough for us in 331)

Language Features & Aliasing

• Most recent languages have some answer to this…

• Java chose to make String immutable
– most keys in maps are strings
– hugely controversial at the time, but great decision

• Python chose to only allow immutable keys in maps
– only numbers, strings, and tuples allowed
– surprisingly, not that inconvenient

• Rust has built-in support for tracking ownership
– ownership can be “borrowed” and returned
– type system ensures there is only one usable alias

Readonly in TypeScript

• TypeScript can ensure values aren’t modified
– extremely useful!

• Readonly tuples:

type IntPair = readonly [bigint, bigint];

• Readonly fields of records:

type IntPoint = {readonly x: bigint,
 readonly y: bigint};

Readonly in TypeScript

• Readonly fields of records:

type IntPoint = {readonly x: bigint,
 readonly y: bigint};

• Readonly records:

type IntPoint = Readonly<{x: bigint, y: bigint}>;

– this.props is Readonly<MyPropsType>

• More readonly…

ReadonlyArray<bigint>
ReadonlyMap<string, bigint>
ReadonlySet<string>

