
Intro to the Browser
Kevin Zatloukal

CSE 331

Browser Operation

• Browser reads the URL to find what to load

• For URLs entered by users, the response is usually HTML

server name path

request

response
(HTML)

client server

Browser Operation

• Browser natively knows how to display HTML

• Page can also include JavaScript to execute
– but it it is not required
– if present, the JavaScript can change the HTML displayed

request

response
(HTML)

client server

HTML

• HTML = Hyper Text Markup Language
– text format for describing a document / UI
– text describes what you want drawn in the browser

• HTML text consists primarily of “tags” and text

HTML Tags

Tag Name Content

Closing Tag

Element

<p> Some Text </p>

<p id=”firstParagraph”> Some Text </p>

Tag Name

Attribute Name

Attribute Value Content

Closing Tag

Element

Elements Form a Tree

• Elements can have children (text or elements)
– text is always a leaf in the tree

<div>
 <p id=”firstParagraph”> Some Text </p>

 <div>
 <p>Hello</p>
 </div>
</div>

div

p br div

p

More on HTML

• HTML is a text format that describes a tree
– nodes are elements or text

<div>
 <p>Some text</p>
 <p>More text</p>
</div>

div

p p

HTML text
HTML tree

parse

– HTML text is parsed into a tree (“DOM”)
– JS can access the tree in the variable “document”

our code lives in the world on the right side

More on HTML

• Browser window displays an HTML document
– tree is turned into drawing in the page

 Some text

 More text

div

p p
HTML display

HTML tree

draw

HTML tree

– browser displays the HTML in the window
browsers parse and draw very quickly

– JS has limited access to display information

Developer Tools show the HTML

• Click on any HTML element and choose "Inspect"
– can see exact size in pixels, colors, etc.

Styling

• The “style” attribute controls appearance details
– margins, padding, width, fonts, etc.
– see an HTML reference for details (when necessary)

• Attribute value can include many properties
– each is “name: value”
– separate multiple using “;”

<p>Hi,
 Bob!
</p>

– we will generally not worry much about looks in this class…

https://developer.mozilla.org/en-US/docs/Web/HTML/Reference

Cascading Style Sheets (CSS)

• Commonly used styles can be named
– association of names to styles goes in a .css file

// foo.css
span.fancy { color: red; margin-left: 15px }

// foo.html
… <p>Hi, Bob</p> …

• Useful to avoid repetition of styling
– makes it easier to change

Old School Web UI

Including JavaScript in HTML

• Server usually sends back HTML to the browser

• Include code to execute inside of script tag:

<script>
 console.log("Hi, browser");

</script>

• Can also put the script into another file:
<script src="mycode.js"></script>

Events in the Browser

• Client applications are event-driven
– register "handlers" for various events

• Can do so like this in HTML (but don't!)
<button onClick="handleClick(event)">Click Me</button>

<script>
 const handleClick = (evt) => {
 console.log("ouch");

 };

</script>

Changing the HTML

• Change the HTML displayed like this (but don't!)

<p>Add 2 to <input type="text" id="num"></input></p>

<p><button onClick="doAdd(event)">Submit</button></p>

<div id="answer"></div>

<script>
 const doAdd = (evt) => {
 const numElem = document.getElementById("num");
 const num = Number(numElem.value);

 const ansElem = document.getElementById("answer");
 ansElem.innerHTML = `The answer is ${num+2}`;

 };
</script>

Many Kinds of Updates

• Adding a new item:

<h3>To-Do List</h3>

<ul id="items">
 Laundry
 Wash Dog

ul

li li li

LectureWash DogLaundry

Many Kinds of Updates

• Removing item:

<h3>To-Do List</h3>

<ul id="items">
 Laundry
 Wash Dog
 Lecture

ul

li li li

LectureWash DogLaundry

Many Kinds of Updates

• Editing an item:

ul

li li

LectureLaundry input

Problems with Old School UI

• Write code for every way the UI could change
– many, many cases

• Not specific to HTML
– same issue exists in Windows, iPhone, etc.
– if you write code to put things on screen,

then you write code to change where they are on screen

New School UI

• New approach: what should it look like now?
– write function that maps current state to desired HTML
– compare desired HTML to what is on the screen now
– make any changes needed to turn former into latter

• Huge improvement in productivity
– introduced in Meta's "React" library
– library performs the "compare" and "change" parts

• Faster to write HTML UI than anything else
– similar libraries could be written for other platforms

React Components

HTML Literals

• Extension of JS allows HTML expressions
– file extension must be .jsx

const x = <p>Hi there!</p>;

HTML Literals

• Supports substitution like `..` string literals,
– but uses {..} not ${..}

const name = “Fred”;
return <p>Hi {name}</p>;

• Can also substitute the value of an attribute:

const rows = 3;
return <textarea rows={rows} cols="25">
 initial text here
 </textarea>;

JSX Gotchas

• Must have a single root tag (i.e., must be a tree)
– e.g., cannot do this

return <p>one</p><p>two</p>;

– instead, wrap in a <div> or just <>..</> (“fragment”)

• Replacements for attributes matching keywords
– use “className=” instead of “class=”
– use “htmlFor=” instead of “for=”

Cascading Style Sheets (CSS)

• CSS styling can be used in JSX

// foo.css
span.fancy { color: red; margin-left: 15px }

// foo.jsx
import './foo.css'; // another weird import
…

return <p>Hi, Bob!</p>;

• Nice to get this out of the source code
– usually not the programmers who need to change it

Simplest React Component

• Component that prints a Hello message:

class HiElem extends Component {

 constructor(props) {
 super(props);

 this.state = {lang: "en"};
 }

 render = () => {

 if (this.state.lang === "en") {
 return <p>Hi, Kevin!</p>;
 } else {
 return <p>Hola, Kevin!</p>;
 }

 };
}

How do we change "lang"?

Simplest React Component

Simplest React Component

render = () => {
 if (this.state.lang === "en") {
 return <p>Hi, Kevin!
 <button onClick={this.doEspClick}>Esp</button>
 </p>;
 } else {
 return <p>Hola, Kevin!
 <button onClick={this.doEngClick}>Eng</button>
 </p>;
 }
};

doEspClick = (evt) => {

 this.setState({lang: "es"};
};

Simplest React Component

<button onClick={this.doEspClick}>Esp</button>

doEspClick = (evt) => {
 this.setState({lang: "es"};
};

• Must call setState to change the state
– directly modifying this.state is a (painful) bug

• React will automatically re-render when state changes
– but this does not happen instantly

React Responds to setState calls

	 			HTML	on	screen	=	render(this.state)

t	=	10

Component React

this.state	=	s1 doc	=	HTML1	=	render(s1)

this.setState(s2)

doc	HTML2	=	render(s2)

t	=	20

t	=	30 this.state	=	s2

React updates this.state to s2 and doc to HTML2 simultaneously

React Component with an Event Handler

• Pass method to be called as argument (a “callback”):

 <button onClick={this.doEspClick}>Esp</button>

• Be careful not to do this:

 <button onClick={this.doEspClick()}>Esp</button>

• Including parentheses here is a bug!
– that would call the method inside render

passing its return value as the value of the onClick attribute

– we want to pass the method to the button, and
have it called when the click occurs

Putting the UI in the Page

• Initial page has a placeholder in the HTML:

<div id=“main”></div> (empty DIV in index.html)

• Put HTML into it from code like this:

const elem = document.getElementById(“main”);
const root = createRoot(elem);
root.render(<HiElem name={"Kevin"}/>);

– createRoot is a function provided by the React library
tells React that it should keep the HTML in the page matching what render returns

Putting the UI in the Page

• Initial page has a placeholder in the HTML:

<div id=“main”></div> (empty DIV in index.html)

• Put HTML into it from code like this:

const elem = document.getElementById(“main”);
const root = createRoot(elem);
root.render(<HiElem name={"Kevin"} size={3}/>);

– in HiElem, this.props will be {name: "Kevin", size: 3}
– each component is a custom tag with its own attributes ("properties")

React Components

render = () => {
 if (this.state.lang === "en") {
 return <p>Hi, {this.props.name}!
 <button onClick={this.doEspClick}>Esp</button>
 </p>;
 …

 }

};

• render can use both this.props and this.state
– difference 1: caller give us props, but we set our state
– difference 2: we can change our state

Summary of Last Time

• Writing User Interface with React:
– write a class that extends Component
– implement the render method

• Each component becomes a new HTML tag:
root.render(<HiElem name={"Kevin"}/>);

– in HiElem, this.props will be {name: "Kevin"}

• Can use props and state (and only those!) in render:
render = () => {
 if (this.state.lang === "en") {
 return <p>Hi, {this.props.name}!
 <button onClick={this.doEspClick}>Esp</button>
 </p>;
 …

Second React Component

• Put name in state and let the user change it:

class HiElem extends Component {

 constructor(props) {
 super(props);

 this.state = {name: "Kevin"};
 }

 render = () => {

 return <p>Hi, {this.state.name}</p>;
 };
}

How do we change the name?

Ask the user for their name.

Second React Component

Second React Component

constructor(props) {
 super(props);

 this.state = {showGreeting: false};
}

render = () => {

 if (this.state.showGreeting) {
 return <p>Hi, {this.state.name}!</p>;
 } else {
 return <p>What is your name?
 <input type="text"></input>
 <button …>Done</button>
 </p>
 }
};

Second React Component

<input type="text"></input>
 <button onClick={this.doDoneClick}>Done</button>

doDoneClick = (evt) => {

 this.setState({showGreeting: true});
 // what about "name"?
};

How do we get the name text?
Do not reach into document!
(Always a bug. Often a heisenbug.)

Text Value of Input Elememts

• These two are different:

<input type="text"></input>

<input type="text" value="abc"></input>

– missing value means value=""

• The render method says what HTML should be now
– bug if calling render would inadvertently change things

particularly if it would delete user data!

– if we want the second picture, we need to set value in render

Second React Component

<input type="text" value={this.state.name}
 onChange={this.doNameChange}></input>
 <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {
 this.setState({name: evt.target.value});
};

– evt.target is the input element
– evt.target.value is the current text in the input element

Second React Component

<input type="text" value={this.state.name}
 onChange={this.doNameChange}></input>
 <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {
 this.setState({name: evt.target.value});
};

doDoneClick = (evt) => {

 this.setState({showGreeting: true});
};

• Never reach into the document to get state!
– React can re-render at any time
– will be a heisenbug when you forget (usually, it still works!)

Second React Component

<input type="text" value={this.state.name}
 onChange={this.doNameChange}></input>
 <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {
 this.setState({name: evt.target.value});
};

doDoneClick = (evt) => {

 this.setState({showGreeting: true});
};

• Any state you need should be mirrored in your state
– set value and handle onChange

Event Handler Conventions

• We will use this convention for event handlers

doMyCompMyEvent

– e.g., doDoneClick, doNewNameChange

• Reduces the need to explain these methods
– method name is enough to understand what it is for
– method name is the only thing you know they read

• Components should be just rendering & event handlers

component
name

event
name

Example: To-Do List

React Payoff

• No need to write code to
– add a new item to the HTML
– remove an item from the HTML
– update an item in the HTML

all of this is code is tricky (especially if state is not mirrored properly)

• We just write a render method
– tell React what it should look like right now

• React figures out what to add, remove, and update

React Requirements for Lists

• To do this, React needs more from
– needs to distinguish change from add/remove

wash dog wash dog
laundry write lecture
 laundry

– did I insert a new item or change one and add another?
impossible to really know without more information

• React requires each list item to have a key=".."
property that uniquely identifies it

React Requirements for Lists

• To do this, React needs more from
– needs to distinguish change from add/remove

<li key="1">wash dog <li key="1">wash dog
<li key="2">laundry <li key="3">write lecture
 <li key="2">laundry

– can now see that "2" was not changed
– only difference is that "3" was inserted

• React will give you a warning (console) if you forget
– will try its best to figure out what happened
– always fix these to be safe

Component Modularity

More Complex UI

• To-Do List UI is basic
– all of it easily fits in a single component (TodoApp.tsx)

• More complex UI can be too much code for one file
– necessary to split it into multiple components

Recall: Other Properties of High-Quality Code

• Professionals are expected to write high-quality code

• Correctness is the most important part of quality
– users hate products that do not work properly

• Also includes the following:
– easy to understand
– easy to change
– modular

via abstraction

Component Modularity

• Poor design to put all the app in one Component
– it works, but is lacks properties of high-quality code
– better to break it into smaller pieces (modular)

• Two ways to the UI into separate components:

1. Separate parts that are next to each other on screen

2. Separate parts on the screen at different times

Component Modularity

• Separate parts that are next to each other

class App extends Component<..> {
 render = (): JSX.Element {
 return (<div>
 <TitleBar title={“My App”}/>

 <SideBar/>

 <MainBody/>
 </div>);

 };
}

SideBar

TitleBar

MainBody

Component Modularity

• Separate parts on the screen at different times

• App is always on the screen
– App chooses which child component to display

– sometimes it has an Editor child and sometimes not

Item Editor Item ListOR

Example: Hello (v3)

Summary of HW1

• Number of bugs logged:
– average of 3.82 (median of 3)

• Average solution was 41 lines of code
– 1 bug every 10.7 lines of code
– 1 bug every 20–70 lines in industry (wide range of estimates)

Summary of HW1

• Time spent per bug:
– average of 37 minutes per bug
– 90% more than 15 min… 10% more than 1 hour

• Every 10–15 lines you lose this much time
– worthwhile to see what we can do to reduce debugging

Summary of HW1

• Would a type checker help?
– students reported 'yes' for 41% of bugs
– industry studies found even higher numbers (over 60%)

• Moves from every 11 lines to every 18 lines
– likely >50% productivity improvement

assumes 5 minutes to type 10 lines of code
most of the time spent is the debugging

• Large-scale application use type-checked languages
– problems get even worse with multiple programmers
– basically, unheard of to not use one

TypeScript

TypeScript Adds Declared Types to JavaScript

• TypeScript includes declared types for variables
– file names end with .ts or .tsx (not .js or .jsx)
– one extra config file tsconfig.json

• Compiler checks that the types are valid
– produces JS just by removing the types

• Critical to understand how the type system works
– know which bugs it catches and which it misses
– you can then focus your attention on the second group

TypeScript Adds Declared Types

• Type is declared after the variable name:

const u: bigint = 3n;
const v: bigint = 4n;

const add = (x: bigint, y: bigint): bigint => {
 return x + y;
};

console.log(add(u, v)); // prints 7n

– return type is declared after the argument list (…) and before =>

• “Where types go” is the main syntax difference vs Java
– other key differences are functions (=>) and equality (===)

Basic Data Types of TypeScript

• JavaScript includes the following types
number

bigint
string

boolean
null

undefined

Object (record types)
Array (e.g., string[] as in Java)

• TypeScript has these and also…

unknown (could be anything)
any (turns off type checking — do not use!)

Literal Types

• Any literal value is also a type:

let x: "foo" = "foo";
let y: 16n = 16n;

• Variable can only hold that specific value!
– can assign it again, but only with the same value

• Seems silly, but turns out to be useful…

Ways to Create New Types in TypeScript

• Union Types string | bigint
– can be either one of these

• Not possible in Java!
– TS can describe types of code that Java cannot

• Unknown type is (essentially) a union

type unknown = number | bigint | string | boolean | …

Enumerations

• Use unions of literals are “enums”

const dist = (dir: "left"|"right", amt: bigint): bigint => {
 if (dir === "right") {
 return amt;
 } else {
 return –amt;
 }

};

• TypeScript ensures that callers will only pass one of
those two strings (“left” or “right”)
– impossible to do this in Java

(must fake it with the enumeration design pattern)

Java Enums

• Another design pattern built into Java:

 enum Dir {
 LEFT, RIGHT

 }

• Dir.LEFT etc. are the only 2 instances of Dir

• Cannot pass a Dir where String is expected
– must add methods to convert between them

Ways to Create New Types in TypeScript

• Can create compound types in multiple ways
– put multiple types together into one larger type

• Record Types {x: bigint, s: string}
– anything with at least fields “x” and “s”

const p: {x: bigint, s: string} = {x: 1n, s: "hi"};
console.log(p.x); // prints 1n

Ways to Create New Types In TypeScript

• Can create compound types in multiple ways
– put multiple types together into one larger type

• Tuple Types [bigint, string]
– create them like this

const p: [bigint, string] = [1n, "hi"]; // an array

– give names to the parts (“destructuring”) to use them

const [x, y] = p;
console.log(x); // prints 1n

– 331 convention: destructure tuples but not records
access values of compound types by name, not order

Records vs Tuples

• Records and tuples provide the same functionality
– both allow you to put parts together into one object
– conceptually interchangeable

• They differ in who names the parts and when
– record: creator picks the names

everyone must use the same name

– tuple: user of the tuple picks the names
each user can pick their own names

Type Aliases

• TypeScript lets you give shorthand names for types

type Point = {x: bigint, y: bigint};

const p: Point = {x: 1n, y: 2n};
console.log(p.x); // prints 1n

• Usually nicer but not necessary
– e.g., this does the same thing

const p: {x: bigint, y: bigint} = {x: 1n, y: 2n};
console.log(x); // prints 1n

Structural vs Nominal Typing

• Deep difference between TypeScript and Java types

• TypeScript uses “structural typing”
– sometimes called “duck typing”

“if it walks like a duck and quacks like a duck, it’s a duck”

type T1 = {a: bigint, b: string};
type T2 = {a: bigint, b: string};

const x: T1 = {a: 1n, b: “two”};

– can pass “ x ” to a function expecting a “ T2 ”!

Structural vs Nominal Typing

• Java uses “nominal typing”

class T1 { int a; int b; }
class T2 { int a; int b; }

T1 x = new T1();

– cannot pass “ x ” to a function expecting a “ T2 ”

• Libraries do not interoperate unless it was pre-planned
– create “adapters” to work around this

example of a design pattern used to work around language limitations

React Components

type HiProps = {name: string};
type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {

 constructor(props: HiProps) {
 super(props);

 this.state = {greeting: “Hi”};
 }

• Component is a generic type
– first component is type of this.props (readonly)
– second component is type of this.state

Type Inference

• If you leave off the type, TS will try to guess it
– often, but not always, it guesses correctly

• This will work fine

const p = {x: 1n, y: 2n};
console.log(p.x); // prints 1n

– compiler should correctly guess{x: bigint, y: bigint}
– can see in VS Code by hovering over “p”

Type Inference

• If you leave off the type, TS will try to guess it
– often, but not always, it guesses correctly

• 331 convention: type declarations are required on…
– function arguments and return values
– variables declared outside of any function (“top-level”)

these could be exported, so types should be explicit

• We do not require declarations on local variables
– but it is fine to include them
– if TS guesses wrong, you will need to include it

Example: To-Do List (v2)

Modular To-Do List

• App will have two different "pages":

– clicking the "Add" link shows the "New Item" page
– clicking the "Add" or "Cancel" button shows the list again

TodoItems NewItem

Modular To-Do List

• State of the app keeps track of which page to show

this.state = {creating: false, items: []};

– show "New Item" page if creating is true
– show "Todo Items" page if creating is false

• List of items must be stored in TodoApp
– needs to continue to exist even if TodoItems does not exist

Modular To-Do List

• List of items must be stored in TodoApp
– needs to continue to exist even if TodoItems does not exist

• How does TodoItems change the list?
– it cannot do so directly
– instead, it tells TodoApp to make the change

invoke a callback passed by TodoApp to do so

• General Rule: state lives at the closest ancestor of
all the components that need it
– most state is not needed outside that one component

Example: To-Do List (v3)

Lifecycle Events

• Warning: React doesn’t unmount when props change
– instead, it re-renders and calls componentDidUpdate

just as state can change, props can change

– you can detect a props change there

componentDidUpdate = (prevProps) => {

 if (this.props.field !== prevProps.field) {
 … // our props were changed!
 }
};

– better to avoid this if possible
good setup for painful debugging

