
Intro to JavaScript
Kevin Zatloukal

CSE 331

Learning a New Language

• We’re going to learn some JavaScript

• The second language can be the hardest to learn!
– some things you took for granted no longer hold
– must slow down think about think about every step

• We will move slowly
– we won’t use all the language this quarter

will not learn every feature of the language

– comparison with Java will be useful

Running JavaScript

• Can be run in different environments
– command line (like Java)

instead of "java MyClass", it is "node mycode.js"

– inside the browser

• Primarily interesting because of the browser
– neither language would be used much otherwise
– command line provided so you can use one language for both

• In both environments, print output with console.log(..)
– prints to command line or “Developer Console” in the browser

Programming for the Browser

• JavaScript is the lingua franca of web browsers

• Previously, other languages were tried in the browser
– Java was used but is no longer supported
– Flash was used but is no longer supported
– Google’s “dart” language is still around (probably)

• Now, other languages used by compiling into JavaScript
– will see an example of this next week
– Java can be compiled to JS (but it’s not great)

you can’t really get around needing to learn JS

JavaScript

History of JavaScript

• Incredibly simple language
– created in 10 days by Brendan Eich in 1995
– often difficult to use because it is so simple

• Features added later to fix problem areas
– imports (ES6)
– classes (ES6)
– integers (ES2020)

Relationship to Java

• Initially had no relation to Java
– picked the name because Java was popular then
– added Java’s Math library to JS also

e.g., Math.sqrt is available in JS, just like Java

– copied some of Java’s String functions to JS string

• Both are in the “C family” of languages
– much of the syntax is the same
– more differences in data types

• We will discuss syntax (code) first and then data…

JavaScript Syntax

• Both are in the “C family” of languages

• Much of the syntax is the same
– most expressions (+, -, *, /, ?:, function calls, etc.)
– if, for , while , break , continue , return
– comments with // or /* .. */

• Different syntax for a few things
– declaring variables
– declaring functions
– equality (===)

Java vs JavaScript Syntax

• The following code is legal in both languages:
– assume “s” and “j” are already declared

s = 0;

j = 0;

while (j < 10) {
 s += j;
 j++;

}

// Now s == 45

OR for (j = 0; j < 10; j++)

Differences from Java: Type Declarations

• JavaScript variables have no declared types
– this is a problem… (we will get them back later)

• Declare variables in one of these ways:

const x = 1;
let y = "foo";

– “const” cannot be changed; “let” can be changed
– use “const” whenever possible!

Basic Data Types of JavaScript

• JavaScript includes the following runtime types

number

bigint
string

boolean
undefined
null (another undefined)
Object
Array (special subtype of Object)

Differences from Java: “===” operator

• JavaScript’s “==” is problematic
– tries to convert objects to the same type

e.g., 3 == "3" and even 0 == "" are… true?!?

• We will use “===” (and “!==”) instead:
– no type conversion will be performed

e.g., 3 === "3" is false

• Mostly same as Java
– compares values on primitives, references on objects
– but strings are primitive in JS (no .equals needed)

== on strings common source of bugs in Java

Checking Types at Run Time

Condition Code

x is undefined x === undefined

x is null x === null

x is a number typeof x === "number"

x is an integer typeof x === "bigint"

x is a string typeof x === "string"

x is an object or array (or null) typeof x === "object"

x is an array Array.isArray(x)

Numbers

bigint integers
number floating point (like Java double)

• By default, JS uses number not bigint
– 0, 1, 2 are numbers not integers
– add an “n” at the end for integers (e.g., 2n)

• All the usual operators: + - * / ++ -- += …
– division is different with number and bigint
– we will prefer bigint because correctness is more important

• Math library largely copied from Java
– e.g., Math.sqrt returns the square root

Strings

• Mostly the same as Java
– immutable
– string concatenation with “+”

• A few improvements
– string comparison with “===” and “<”

no need for s.equals(t)… just write s === t

– use either ’..’ or ”..” (single or double quotes)
– new string literals that support variable substitution:

const name = "Fred";
console.log(`Hi, ${name}!`); // prints “Hi, Fred!”

Boolean

• All the usual operators: && || !

• “if” can be used with any value
– “falsey” things: false, 0, NaN, "", null, undefined

– “truthy” things: everything else

• A common source of bugs…
– stick to boolean values for all conditions

Record Types

• JavaScript “Object” is something with “fields”

• JavaScript has special syntax for creating them

const p = {x: 1n, y: 2n};
console.log(p.x); // prints 1n

• The term “object” is potentially confusing
– used for many things
– I prefer it as shorthand for “mathematical object”

• Will refer to things with fields as “records”
– normal name in programming languages

Record Types

• Quotes are optional around field names

const p = {x: 1n, y: 2n};
console.log(p.x); // prints 1n

const q = {"x": 1n, "y": 2n};
console.log(q.x); // also prints 1n

• Field names are literal strings, not expressions!

const x = "foo";
console.log({x: x}); // prints {”x”: ”foo”}

Record Types

• Retrieving a non-existent field returns “undefined”

const p = {x: 1n, y: 2n};
console.log(p.z); // prints undefined

• Can also check for presence with “in”

console.log("x" in p); // prints true
console.log("z" in p); // prints false

• Be careful: all records have hidden properties

console.log("toString" in p); // prints true!

Maps and Sets

• Do not try to use a record as a map!
– usually why reason people use “in” and p["name"]

• Just use Map instead:

const M = new Map([["a", 1], ["b", 5]]);
console.log(M.get("a")); // prints 1
console.log(M.get("a")); // prints 5
console.log(M.get("toString")); // prints undefined

M.set("a", 2);
M.set("c", 3);

console.log(M.get("a")); // prints 2
console.log(M.get("c")); // prints 3

Maps and Sets

• JavaScript also provides Set:

const S = new Set(["a", "b"]);
console.log(S.has("a")); // prints true
console.log(S.has("c")); // prints false

S.add("c");

console.log(S.has("c")); // prints true

• Constructor takes an (optional) list of initial values
– constructor of Map takes a list of pairs

Arrays

• Simpler syntax for literals:

const A = [1, 2, "foo"]; // no type restriction!
console.log(A[2]); // prints “foo”

• Add and remove using push and pop:

A.pop();

console.log(A); // prints [1, 2]
A.push(3);
console.log(A); // prints [1, 2, 3]

Arrays

• Length field stores the length of the array

const A = [1, 2, "foo"];
console.log(A.length); // prints 3
A.pop();

console.log(A.length); // prints 2

• Arrays are a special type of object:

console.log(typeof A); // prints ”object”

console.log(Array.isArray(A)); // prints true
console.log(Array.isArray({x: 1})); // prints false

Functions

• Functions are first class objects
– “arrow” expressions creates functions
– store these into a variable to use it later

const add2 = (x, y) => x + y;
console.log(add2(1n, 2n)); // prints 3n

const add3 = (x, y, z) => {
 return x + y + z;
};
console.log(add3(1n, 2n, 3n)); // prints 6n

Functions

• We will declare functions like this

const add = (x, y) => {
 return x + y;
};

// add(2n, 3n) == 5n

• Functions can be passed around
– “functional” programming language
– but we won’t do that (much) this quarter

we will pass functions to buttons to tell them what to do when clicked
see CSE 341 for more on that topic

Classes

• Class syntax is similar to Java but no types:

class Pair {
 constructor(x, y) {
 this.x = x;
 this.y = y;
 }

}

const p = new Pair(1, 2);
const q = new Pair(2, 2);

– fields are not declared (because there are no types)
– constructor is called “constructor” not class name

Classes

• We will declare methods like this:

class Pair {
 …
 distTo = (p) => {
 const dx = this.x – p.x;
 const dy = this.y – p.y;
 return Math.sqrt(dx*dx + dy*dy);
 };

}

console.log(p.distTo(q)); // prints 1

– this assignment is executed as part of the constructor
– there is another syntax for method declarations but avoid it

leads to big problems when we are writing UI shortly

JavaScript Summary

• Most of the syntax is the same
– even has Map and Set like Java

• Main difference is no declared types

• That means new syntax for
– declaring variables, functions, and classes
– checking type a runtime with typeof

• That means you can mix types in expressions
– but you don't want to! avoid this!
– use explicit type conversions (e.g. Number(..)) if necc.

JavaScript Summary

• A few new features that are useful…

• Strings are primitive types
– can use "===" and "<" on them
– simpler syntax for accessing characters: "s[1]"

• Integers have their own type
– literals use an "n" suffix, e.g., "3n"
– "/" is then integer division

• New syntax for string literals: `Hi, ${name}`

Modules

Imports

• Originally, all JavaScript lived in the same "namespace"
– problems if two programmers use the same function name
– tools would rename functions to avoid conflicts (e.g., webpack)

• Now, by default, declarations are hidden outside the file

• Add the keyword “export” to make it visible

export const MAX_NUMBER = 15; // in src/foo.js

• Use the “import” statement to bring into another file

import { MAX_NUMBER } from './foo.js'; // in src/bar.js

– ‘./foo.js’ is relative path from this file to foo.js

Imports

export const MAX_NUMBER = 15; // in src/foo.js

import { MAX_NUMBER } from ‘./foo.js’; // in src/bar.js

• For code you write, you will only need this syntax

• JS includes other ways of importing things
– full explanation is very complicated
– don’t worry about it…

• Starter code will include some that look different, e.g.:

import express from 'express';

import './foo.png'; // include a file along with the code

Put Code in Multiple Files

• Each file is a separate namespace ("module")
– names can be shared (exported) or kept private

• Use npm (package manager) to enable this behavior
– file called package.json contains project setup
– scripts run node with module system enabled

{
 "name": "my-project",

 "type": "module",

 "scripts": {
 "exec": "node src/index.js"

 }
}

Packages

import express from 'express';

• This imports from a package called "express"
– use package name not a relative path (like "./foo.js")

• Use npm to download libraries
– in package.json:

 "dependencies": {

 "express": "^4.2.1"
 }

– second part is the version number we want to use
getting the wrong version can make things break, so be specific

– "npm install" downloads all libraries listed here

HTTP Servers

Browser Operation

• Browser reads the URL to find what HTML to load

• Contacts the given server and asks for the given path

server name path

request

response
(e.g., HTML)

client server

URL Parts

• URLs have more parts than just server and path:

https://mail.google.com/mail/u/0/?zx=ABCD#inbox

• Server name identifies the computer to talk to
– uses the HTTP(S) protocol

• Conceptually:
– path identifies code to execute on the server
– search string is input passed to that file when run
– (fragment will not be important for us)

server name path search fragment

Query Parameters

• Search string can pass multiple values at once
– we call these “query parameters”

• Each parameter is of the form “name=value”
– no spaces around the “=“

• Multiple values are placed together with “&”s in between

?a=3&b=foo&c=Kevin

– encodes three query parameters: a is “3”, b is “foo”, c is “Kevin”

Query Parameters

?a=3&b=foo&c=Kevin%20Z

• All values are strings

• Special characters (like spaces) are encoded
– the encodeURIComponent function does this for us

• Will not need to write code to parse query params
– have libraries that do this for us

Custom Server with Express

• Use "express" library to write a custom server:

const F = (req, res) => {
 …
}

const app = express();
app.get(“/foo”, F);
app.listen(8080);

– request for http://localhost:8080/foo will call F
– mapping from “/foo” to F is called a “route”
– can have as many routes as we want (with different URLs)

http://localhost:8080/foo

HTTP Terminology

• HTTP request includes
– URL: path and query parameters
– method: GET or POST

GET is used to read data stored on the server (cacheable)
POST is used to change data stored on the server

– body (for POST only)
useful for sending large or non-string data with the request

• Browser issues a GET request when you type URL

HTTP Terminology

• HTTP response includes
– status code: 200 (ok), 400-99 (client error),

 or 500-99 (server error)
was the server able to respond

– content type: text/HTML or application/JSON (for us)
what sort of data did the server send back

– content
in format described by the Content Type

• Browser expects HTML to display in the page
– we will always send JSON or text to the browser

Custom Server

• Query parameters (e.g., ?name=Fred) in req

const F = (req, res) => {
 if (req.query.name === undefined) {
 res.status(400).send(“Missing ‘name’”);

 return;
 }
 … // name was provided
};

– set status to 400 to indicate a client error (Bad Request)
– set status to 500 to indicate a server error
– default status is 200 (OK)

Custom Server

• Query parameters (e.g., ?name=Fred) in req

const F = (req, res) => {
 if (req.query.name === undefined) {
 res.status(400).send(“Missing ‘name’”);

 return;
 }
 res.send(`Hi, ${req.query.name}`); // sent as text
};

• Content type will be set automatically:
– send of string returned as text/HTML
– send of record returned as application/JSON
– use this coding convention rather than explicit content type

Example App

User types “blue” and presses “Submit”…

Example App

• Apps will make sequence of requests to server

GET /new

{text: “Your fav color is?”}

our server
GET /check?answer=blue

{correct: false}

GET /check?answer=yellow

{correct: true}

“Network” Tab Shows Requests

• Shows every request to the server
– first request loads the app (as usual)
– “new” is a request to get a question
– “check?index=0&answer=blue” is a request to check answer

• Click on a request to see details…

“Network” Tab Shows Request & Response

Summary of Last Time

• Split code into multiple files with import & export
– requires using npm to call node for us

node normally run all code in a single namespace

• NPM also allows us to use existing packages
– will download them for us and let us import then
– example: "express" is a library for writing HTTP servers

• Wrote our first HTTP server
– GET requests take input in req.query (record of strings)
– POST requests take input in req.body (record of anything)

JSON

• JavaScript Object Notation
– text description of JavaScript object
– allows strings, numbers, null, arrays, and records

no undefined and no instances of classes
no ‘..’ (single quotes), only “..”
requires quotes around keys in records

• Translation into string done automatically by send

res.send({index: 0, text: ’What is your …?’});

POST Body

• Sent in request as JSON
– parsed into a JS object by express library

• POST body available in req.body
– e.g., if POST body is {"a": 3, "b": 5}

const getAvg = (req, res) => {
 const avg = (req.body.a + req.body.b) / 2;
 res.send({avg: avg}); // sent as JSON
};

– note that req.body.a is a number, not a string

Servers

app.get(“/foo”, F);

app.listen(8080);

• Program does not exit at the end of the file
– call to listen tells it to run forever
– runs until forcibly stopped (Ctrl-C)

• Does work only when request "events" occur
– called "event-driven" programs

• This is how most real-world programs work
– client applications wait for user interaction
– servers wait for new requests from clients

Debugging Event-Driven Programs

• When command-line program fails…
– know the exact inputs that caused it
– can re-run it over and over until you understand the cause

• When event-driven program fails…
– might know the last event that occurred (e.g., that request)
– don't know the full sequence of events
– don't know the state of all the variables in the program
– usually unclear how to reproduce the failure

• Debugging real-world programs is hard
– in some settings, it is nearly impossible

Debugging

A Bug’s Life

• Defect (“the bug”): mistake in the code

• Error: incorrect state that is still internal to our code
 (no one else can see it yet)

• Failure: incorrect behavior that is externally visible
 (e.g., visible to a user / client)

Debugging is the search
from failure back to defect

Example 1: sum the values in an array

let A = [3, 28, 7, 15, 12, 234, 89, 834];
let s = 0;

for (let i = 0; i <= A.length; i++)
 s += A[i];

console.log(s);

• Failure: prints NaN!

• Error: how did we end up with NaN?
– A[A.length] = undefined
– 1222 + undefined = NaN

• Defect: “<=” should be “<” so we stay inside the array

Would a type checker prevent this?
Sadly, no

Example 2:

const avgScore = (req, res) => {
 if (req.query.score1 === undefined ||
 req.query.score2 === undefined) {
 res.status(400).send(‘Missing at least one score.’);

 } else {
 res.send({avgScore:
 (req.query.score1 + req.query.score2) / 2});

 }
};

GET /avg?score1=99&score2=98

• Failure: sends back {avgScore: 4999}

• Error: “+” is concatenation (then “/” converts to a number)

• Defect: should convert each string with Number(..)

Would a type checker prevent this?
Yes! Division is for numbers

Example 3:

const avgScore = (req, res) => {
 if (req.body.score1 === undefined ||
 req.body.score2 === undefined) {
 res.status(400).send(‘Missing at least one score.’);

 } else {
 res.send({avgScore:
 (req.body.score1 + req.body.score2) / 2});

 }
};

POST /avg

• Failure: sends back {avgScore: 4999}

• Error: “+” is concatenation (then “/” converts to a number)

• Defect: client sent strings not numbers

Would a type checker prevent this?
No! Nothing checks our JSON

Debugging

• Debugging is different from coding
– only happens when states are not as expected

variable has an unexpected type
state does not satisfy the expected assertions

• Never know how long it will take
– happens when you made a mistake in reasoning

initially, you don’t understand what is going on (by definition!)

– requires a full understanding of all code involved
could be a lot of code…

– important to start early!

Debugging

• Debugging is different from coding
– only happens when states are not as expected

variable has an unexpected type
state does not satisfy the expected assertions

• Arguably harder than coding…

Brian Kernighan

“Debugging is twice as hard as
writing the code in the first place.”

Debugging Tip #1

• Check the easy stuff first
– make sure all the files are saved
– restart the server
– restart your computer
– make sure someone didn’t already fix it

• If it is one of the first 3, you will not find it debugging
– every minute you spend until you hit save / restart is wasted

Debugging Tip #2

• Create a minimal example that demonstrates problem
– need a way to reliably reproduce the failure
– easier to look through everything in the debugger

• Shrink the input that fails:

Find “very happy” in “Fáilte, you are very welcome! Hi Seán! I am very very
happy to see you all.”

Find “very happy” in “I am very very happy to see you all.”

Find “very happy” in “very very happy”

Find “ab” in “aab”

not the accent characters

something to do with partial match

Debugging Tip #3

• Look for common silly mistakes
– comparing records with ===
– misspelling the name of a method you were implementing

usually caught by a type checker

– passing arguments in the wrong order

• Easy for these to slip past code reviews
– computers see these better than people

Debugging Tip #4

• Make sure it is a bug!
– check the spec carefully
– tricky specs can trick you

• These are the absolute worst
– spend hours and then discover the code was right all along

Debugging Tip #5

• Be thoughtful & systematic
– don’t just try random changes

• Write down what you have tried
– don’t try the same thing again and again

• Use the Scientific Method to gain a full understanding:

Formulate a hypothesis

Design an experiment

Perform an experiment

Interpret results

Example 4:

const sum = (A) => {
 let s = 0;
 for (let i = 0; i <= A.length; i++)
 s += A[i];

 return s;
};

Failure: sum([1, 2, 3]) returns NaN

• Hypothesis: “<=” should be “<”

• Experiment: try changing it

• Result: it works

• Lesson: that was the bug (Why? How?)

Make sure you fully understand
the behavior before continuing!

Maybe you just moved the bug
to some other input.

Example 5:

const avgScore = (req, res) => {
 …
 res.send({avgScore:
 (req.query.score1 + req.query.score2) / 2});

};

GET /avg?score1=99&score2=98

• Hypothesis: code is doing string concatenation

• Experiment: print out req.query and calculated result

• Result: inputs are ’99’ are ‘98’ & output is 4999

• Lesson: these are strings, so they are concatenated

Example 6:

const avgScore = (req, res) => {
 …
 res.send({avgScore:
 (req.query.score1 + req.query.score2) / 3});

};

POST /avg

• Hypothesis: bug is in the loop

• Experiment: look in the Network tab

• Result: POST body is {score1: '99', score2: '98'}

• Lesson: client sent the wrong type

Now, start searching the client…

One experiment may not be enough!

HW1-3 will require systematic debugging

Debugging Tip #5

• Use Binary Search to find the error

state is good when the object is created
… (numerous user actions) …
state is bad when user clicks “submit”

• Find an event that happens somewhere in the middle

state is good when the object is created
…
Is the state good when the user clicks on the dropdown?
…
state is bad when user clicks “submit”

Debugging Tip #6

• Try explaining the problem to someone / something
– can even be a rubber duck

Pragmatic Programmer calls this “rubber ducking”

• Talking through the problem often helps you spot it
– this happens all the time

Debugging Tip #7

• Get some sleep!
– the later it gets, the dumber I get
– often don’t realize it until 4–5am

• Common to wake up and instantly see the problem

• Important to start early!
– can’t do this the night it is due

Debugging Tip #8

• Get some help!
– easy for bugs to hide in your blind spots

• After some number of hours, continuing is not helpful
– need new ideas about where to look

• Important to start early!
– no office hours late at night

Debugging Gets Harder From Here…

• Search space grows as the program grows
– hundreds of thousands if not millions of lines

much of it not written by you

– bug could be very far from the failure
will see examples of how later

• Bug may only happen sometimes
– sometimes called "heisenbugs"

particularly common with asynchronous events (e.g., server requests)

– can be unclear what conditions make the bug occur
day of the week? phase of the moon? what?

Debugging Gets Harder From Here…

• Can have very little information about the bug
– maybe just a stack trace or a user report

• May have no way to see what is happening
– may only happen on the user's machine
– could go away if you use the debugger or print something!

particularly common with asynchronous events

– could go away if you even call a function
common with compiler bugs (nice command-line programs)

• The higher the cost of debugging,
the more valuable it is to get it right the first time
– command-line programs are the easiest case

