CSE 331
Software Design & Implementation

Autumn 2024
Section 9 — HW 9 Prep

Administrivia

e HW 9 written released tonight, due 12/02 (but try to

do it earlier because the code is really really hard)
o Code released Friday ? due 12/07

e NO CLASS TOMORROW (11/27)
o No OH Wed, Thurs, Fri (Ed will have slower
responses but it's ok to ask)

e FINAL EXAM 12/10 (next section will be primarily

exam prep)
o 12:30pm - 2:20 pm in Bagley Hall

HW 9 Prep & Tips

« HW 9 will be adding functionality to Campus Maps from HW 3

« Section slides and w/s designed to introduce you to HW9
concepts & data structures

- Please take a look at the starter code BEFORE starting the
assignment
— This will allow you to better understand the specifications of
the assignments
— We also give you many helper functions and definitions so
this will also prevent you from reinventing the wheel (i.e.
calculating the length of a list)

Prep for HW 9 / Locations

In HW 9, we will be working with Location objects again:
type Location := {z: R, y: R}

We will be interested in finding all Location points within a given
rectangle.

To keep track, we will use trees that recursively split areas on the map
until each region only contains a single point

LocTree

- To represent the points in the image on

the left, we would start by keeping track of

| one rectangle that represents the entire
_______________ LS map

: - We would then split that rectangle into 4

rectangles at m,

b b - And then split the lower right rectangles

L into 4 rectangles at m,.

my is the average location of all 4 points, m, is the average location of points ¢ and d.
We call this average point the “centroid” !

This inductive data type will help us represent the tree:

type LocTree := empty
| single(loc : Location)
|

split(at : Location, nw : LocTree, ne: LocTree, sw: LocTree, se: LocTree)

Note that nw, ne, sw, and se are lowercase! Uppercase relates to a different function.

Regions

We will keep track of the corners for regions we are interested in.
The Region object will be as follows:

type Region := {x1: R, x2: R, yl: R, y2: R}

The region R contains the location Z if and only if R.x1 <= fx <= R.x2
and R.y1 <= dy <= R.y2. Thus, the following region includes every
point in the plane:

EVERYWHERE := {x1: —o0, x2: 00, yl: —o0, y2: o0}

Region functions

Functions NW... SW : (Location, Region) -> Region

- take a location point and a region rectangle
- return the subregion of parameter that is split at the location
point and the in indicated direction

EX: SE(p, R)=S

EX: NW(m2, SE(m1,
EVERYWHERE)

Question 1

We have a function overlap : (Region, Region) — Bool that returns true if two regions overlap. Two
regions overlap if they share any area in common. Write an expression that returns true if 2 regions R,
and Ry overlap.

Question 2a

(a) Define a function FindAll : (LocTree, Region) — List{Location) that returns a list of all locations
in the LocTree that fall within the given region. The order of the locations in the list does
not matter but there should be no duplicate entries. Assume we have the following function
contains : (Region, Location) — Bool that returns true if the location is within the region.

Question 2b

(b) Improve the algorithm by excluding any quadrants that do not overlap with the region passed in.
This will avoid traversing any subtrees that cannot contain any locations in the region. We can
do this by defining an improved function fa : (LocTree, Region, Region) — List(Location) that
takes in an additional Region parameter. The second Region parameter is the region that we are
looking for locations in. The first Region parameter is a region containing all the points in the
tree. It will use this region parameter to avoid recursing into quadrants of split nodes when they
cannot contain a location in the second Region parameter.

Question 2c

(c) Prove that if region S contains all locations in the tree T', then fa(7', S, R) = FindAll(T, R). Your
proof should be by structural induction on T.

Feel free to use the fact that, if S contains all the locations in split(m, nw, ne, sw, se), then
NW(m, S) contains all the locations in nw and likewise for ne, sw, and se. (This follows from the
representation invariant for split nodes and the definitions of these functions.)

FindAll(empty, R) := []
FindAll(single(s), R) := [s] if contains(R, s)
FindAll(single(s), R) := [] if not contains(R, s)
FindAll(split(im, nw, ne, sw, se), R) := FindAll(nw, R)

+ FindAll(ne, R)
+ FindAll(sw, R)
+ FindAll(se, R)

fa(empty, S, R) := ||
fa(single(s), S, R) := [s] if contains(R, s)
fa(single(s), S, R) := || if not contains(R, s)
fa(split(m, nw, ne, sw, se), S, R) :=] if not overlap(S, R)
fa(split(m, nw, ne, sw, se), S, R) := fa(nw, NW(m, 5), R)

+ fa(ne,NE(m, S), R)
+ fa(sw, SW(m, S), R)
+ fa(se, SE(m, S), R)

Question 2c

