CSE 331
Software Design & Implementation

Autumn 2024
Section 8 — Trees and ADTs

Administrivia

e HW 8 written released tonight at 4:30 pm, due
Thursday 11/21 at 11 pm
o lItis only 1 problem, try to get it done by
Wednesday night

e HW 8 code released Wed 11/20 at 4:30 pm, due
Monday 11/25 at 11 pm
o Longer code section than recent weeks, so start
doing it early and come to office hours

Proof By Calculation (Review)

« The goal of proof by calculation is to show that an assertion is
true given facts that you already know

« You should start the proof with the left side of the assertion and
end the proof with the right side of the assertion. Each symbol
(=, >, <, etc.) connecting each line of the proof is that line's
relationship to the previous line on the proof

« Only modify one side

Example:
Suppose we have the facts: x = 3,y =4, z > 5 and we want to use
proof by calculation to prove x? + y? < z2. Our proof by calculation

would look like this:
note that each line

X2 +y? =32 +y? since x =3 X -
=32 4+ 42 - =4 SNOWS 1he
/ —of SINEC ¥ -~ relationship to the
— 52 previous line ONLY
start with left side of _ ~, .
<Z sincez> 95

assertion
\ end with right side of

assertion

Trees

e Trees are inductive data types with a constructor
that has 2+ recursive arguments

e T[hese come up all the time...
o no constructors with recursive arguments = “generalized

enums”
o constructor with 1 recursive arguments = “generalized lists
o constructor with 2+ recursive arguments = “generalized

trees”

Height of a tree

e Binary Tree: a tree in which each node has at most

2 children

O Not to be confused with Binary Search Tree, which also has the

ordering property that (nodes in L) < x and (nodes in R) > x

® type Tree := empty | node(x: Z, L: Tree, R: Tree)

2

1

4

Mathematical definition of height

height: Tree — 7Z

height(empty) = -1

height(node(x, L, R)) := 1 + max(height(L), height(R))

Using Definitions in Calculations (example)

height: Tree - Z
height(empty) = -1
height(node(x, L, R)) := 1 + max(height(L), height(R))

*Suppose “T = node(1, empty, node(2, empty, empty))”

*Prove that height(T) = 1
height(T) = height(node(1, empty, node(2, empty, empty)) since T = ...
= 1 + max(height(empty), height(node(2, empty, empty))) def of
height
=1+ max
=1+ max

-1, height(node(2, empty, empty))) def of height

-1, 1+ max(height(empty), height(empty))) def of height
=1+ max(-1, 1+ max(-1, -1)) def of height (x 2)

=1+ max(-1, 1+ -1) def of max

=1+ max(-1, 0)

=1+0 def of max

=1

.S S S~

Task 1: One, Two, Tree...

The problem makes use of the following inductive type, representing a left-leaning binary tree

type Tree := empty
| node(val : Z, left : Tree, right : Tree) with height(left) > height(right)

The “with” condition is an invariant of the node. Every node that is created must have this property,

func height(empty) = —1
height(node(z, S,T)) := 1+ height(S) forany z:Z and S,T : Tree
Since height(S) >= height(T)
size: Tree - N
size(empty) = 10

size(node(x,S,T")) := 1+ size(S) +size(T') forany x:Z and S,T : Tree

Prove by structural induction that, for any left-leaning tree T we have

size(T) < 2height(T)+1 |

Task 2: How do | Love Tree

a Path tells you how to get to a particular node where each step along the path (item in the list)
would be a direction pointing you to keep going down the LEFT or RIGHT branch of the tree.

type BST := empty type Dir ;= LEFT | RIGHT
| node(x:Z, S:BST, R:BST) type Path := List(Dir)

(a) Define a function “find(p : Path, T": BST)" that returns the node (a BST) at the path from the
root of 7" or undefined if there is no such node.

(b) Define a function “remove(p : Path, T': BST)"” that returns T" except with the node at the given
path replaced by empty.

Specifications for ADTs — Review

e New Terminology for specifying ADTs:
o Abstract State / Representation (Math)
m How clients should understand the object
m Ex: List(nil or cons)
o Concrete State / Representation (Code)
m Actual fields of the record and the data stored
m Ex:{ list: List, last: bigint | undefined }

e \We've had different abstract and concrete types all along!
o in our math, List is an inductive type (abstract)
o in our code, List is a string or a record (concrete)

e Term “object” (or “obj”) will refer to abstract state
o “object” means mathematical object
o “obj” is the mathematical value that the record represents

Documenting ADTs — Review

Abstract Function (AF) — defines what abstract state the field
values represent

— Maps field values — the object they represent
— Output is math, this is a mathematical function

Representation Invariants (RI) — facts about the field values that
must always be true

— Constructor must always make sure Rl is true at runtime
— Can assume Rl is true when reasoning about methods
— AF only needs to make sense when Rl holds

— Must ensure that RI always holds

Documenting ADTs — Example

// A list of integers that can retrieve the last element in 0(1)
export interface FastList {

/** Talk about functions in

* Returns the object as a regular list terms of the abstract state

* @returns obj «e— (obj)

*/

toList: () => List<bigint> Hide the representation

} details (i.e. real fields) from
the client

class FastlLastlList implements FastList {
// RI: this.last = last(this.list);
// AF: obj = this.list;

// @ returns last(obj)
getLast = (): bigint | undefined => {
return this.last;

}s

Task 3: Let's Blow This Point

Suppose we had the following interface and implementation to represent a point in 2D space:

/** Represents a point with coordinates in (x,y) space. */ class SimplePoint implements Point {

interface Point { // RI: <TODO>
/** @returns the x coordinate of the point */ // AF: <TODO>
getX: () => number; readonly x: number;
readonly y: number;
/** Q@returns the y coordinate of the point */ readonly r: number;

getY: () => number;
// Creates a point with the given coordinates

/** constructor(x: number, y: number) {
* Returns the distance of this point to the origin. this.x = x;
* Qreturns Math.sqrt(obj.x*obj.x + obj.y*obj.y) this.y = y;
oy this.r = Math.sqrt(x*x + y*y);
distToOrigin: () => number; }
}
getX = (): number => this.x;
getY = (): number => this.y;

distToOrigin = (): number => this.r;

;

(a) Define the representation invariant (RI) and abstraction function (AF) for the SimplePoint class.

Task 3: Let's Blow This Point

«) class SimplePoint implements Point {
// RI: <TODO>

/** Represents a point with coordinates in (x,y) space.
interface Point {

/** Q@returns the x coordinate of the point */ // AF: <TODO>

getX: () => number; readonly x: number;
readonly y: number;

/** Q@returns the y coordinate of the point */ readonly r: number;

getY: () => number;

y // Creates a point with the given coordinates
ok
* Returns the distance of this point to the origin.

* Q@returns Math.sqrt(obj.x*obj.x + obj.y*obj.y)

constructor (x: number, y: number) {
this.x = x;

*/ this.y = y;
distToOrigin: () => number; this.r = Math.sqrt(x*x + yxy);
} }
getX = (): number => this.x;

getY = (): number => this.y;
distToOrigin = (): number => this.r;

i
(b) Use the Rl or AF to prove that the distToOrigin method of the SimplePoint class is correct.

Task 3: Let’'s Blow This Point

(c) The following problem will make use of this math definition that rotates a point around the origin
(z,y) by an angle 0:

rotate : (Point, R) — Point
rotate((x,y),0) = (x-cos(f) —y-sin(f), x-sin(f) + y - cos(h))

Suppose we have the following implementation of the rotate method:
/** Qreturns rotate(obj, #) */

rotate = (theta: number): Point => {
const newX = this.x * Math.cos(theta) - this.y * Math.sin(theta);
const newY = this.x * Math.sin(theta) + this.y * Math.cos(theta);
return new SimplePoint(newX, newY);

Prove that the rotate method is correct using the Rl or AF.

Task 4: Going Back and Length

len : List = N rev : List — List Lemma 1:
len(nil) = U rev(nil) = nil len(revi(L) = x) = L
3 len(rev(L)) + len(x::nil)
len(z :: L) := 1+len(L) evipa L) = Fevib)s=Hal for any list L and element x

4. Prove by Structural Induction that len(rev(L)) = len(L) for any list L. You may use
Lemma 1 in your proof.

*ok to work from top
and bottom as long
as only modifying
right side!

