
CSE 331: Software Design & Engineering Fall 2024

Quiz Section 7: Tail Recursion

In HW6 Task 5, we worked with numbers represented as lists of base-3 digits. In HW7, we will work
with the same representation of numbers, but now using an arbitrary base b ě 2.

When we write a base-10 number like “120”, the first digit “1” represents the 1 ˆ 102, so it is
the “highest order” digit. Storing the high order digits at the front of a list is a called “big endian”
representation. While the big endian representation matches how we write numbers, it is less convenient
for our calculations, so instead, we will store the “lowest order” digits are at the front of the list. For
example, 120 would be stored as 0 :: 2 :: 1 :: nil rather than 1 :: 2 :: 0 :: nil. This is called a “little
endian” representation, and it is what we will use.

We can formalize the discussion above by defining the the value of the base-b digits as

valuepnil, bq :“ 0

valuepd :: ds, bq :“ d ` b ¨ valuepdsq

This simple, recursive definition encodes the fact that the digits are in the little endian representation.1

For example, we can see that

valuep0 :: 2 :: 1 :: nil, 10q “ 0 ` 10 ¨ valuep2 :: 1 :: nil, 10q def of value

“ 0 ` 10 ¨ p2 ` 10 ¨ valuep1 :: nil, 10qq def of value

“ 0 ` 10 ¨ p2 ` 10 ¨ p1 ` 10 ¨ valuepnil, 10qqq def of value

“ 0 ` 10 ¨ p2 ` 10 ¨ p1 ` 10 ¨ 0qq

“ 0 ` 10 ¨ p2 ` 10 ¨ 1q

“ 0 ` 10 ¨ 12

“ 120

1A recursive function defining the value in the big endian representation would not be so simple!

1



Task 1 – A Tail Recursive Version

We would like to implement this with a loop, but the above definition is not tail recursive. So let’s look
at a tail recursive version of the definition which uses an accumulation parameter to calculate (as we
move down the list) the factor c “ bk to multiply by as we perform the sum:

value-accpnil, b, c, sq :“ s

value-accpd :: ds, b, c, sq :“ value-accpds, b, b ¨ c, s ` c ¨ dq

Write a function that calculates value-accpdigits, b, 1, 0q with a loop using the approach taught in
lecture. Your function should have the following signature:

const valueAcc = (digits: List<number>, base: number): number => { ... };

Be sure to include the invariant of the loop, using the approach taught in lecture for tail-recursive
functions. Your code must be correct with that invariant.

2



Task 2 – Relating the Two Functions

Next, we need to describe how value and value-acc are related. Prove that the following holds:

value-accpds, b, c, sq “ s ` c ¨ valuepds, bq (1)

for all ds, b, c, and s by structural induction on ds.
If true, this would tell us that value-accpds, b, 1, 0q “ 0` 1 ¨ valuepds, bq “ valuepds, bq, which means

that the valueAcc function we wrote correctly calculates value.

3



Task 3 – Another Invariant

Use equation (1) (i.e. value-acc(ds, b, c, s) = s + c * value(ds, b)) to rewrite your invariant so that it
no longer mentions “value-acc”.

(Once you’ve done this, you’ll have erased all of the tracks of how you used tail recursion to solve
this problem. When someone asks how you came up with that loop invariant, say “it just came to me”.)

4



Task 4 – Back to Floyd Logic

Let’s confirm that the final version of our code is correct without any use of value-acc.
Of course, you and I know that the loop is value-acc, but let’s check that the code reviewer can see

that our code is correct without any knowledge of that function.

a) Prove that the invariant holds when we first get to the top of the loop.

b) Prove that, when we exit, the function returns valuepdigits0, baseq.

c) Prove that the invariant is preserved when we execute the loop body.

5


