
CSE 331
Software Design & Implementation

Autumn 2024
Section 7 – Tail Recursion

Administrivia

• HW 7 written released tonight, due Friday 11/15 at
11pm (it’s shorter than HW6 you guys will be ok!)

• HW 7 coding released Thursday, due Monday 11/18
at 11pm

2

Loops vs Tail Recursion

• Tail-call optimization turns tail recursion into a loop

Loops ≤ Tail Recursion (with tail-call optimization)

•Tail recursion can solve all problems loop can
–any loop can be translated to tail recursion
–both use O(1) memory with tail-call optimization
–
•Translation is simple and important to understand
–
•Tells us that Loops ≪ Recursion
–correspond to the special case of tail recursion

my-acc(x :: L, s) := my-acc(L, g(s, x))

Loop to Tail Recursion

const myLoop = (R: List): T => {

let s = f(R);

while (R.kind !== "nil") {

s = g(s, R.hd);

R = R.tl;

}

return h(s);

};

Translate loop to tail recursive helper function and main function:

1. Loop body → recursive case of accumulator function

my-func(L) := my-acc(L, f(L))

2. After loop body → base case of accumulator function

3. Before loop body → variable set up

my-acc(nil, s) := h(s)

Loop to Tail Recursion
const myLoop = (R: List): T => {

let s = f(R);

while (R.kind !== "nil") {

s = g(s, R.hd);

R = R.tl;

}

return h(s);

};

● Final result: tail-recursive function that does same calculation:
my-func(L) := my-acc(L, f(L)) Main func to

call

my-acc(nil, s) := h(s)
Helper accumulator func

my-acc(x :: L, s) := my-acc(L, g(s, x))

Tail Recursion to Loop

Rewriting the Invariant

Question 1

Write a function that calculates value-acc(digits, b, 1, 0) with a
loop. Your function should have the following signature:

const valueAcc = (digits: List<number>, base: number): number => { ... };

Be sure to include the invariant of the loop!

Question 1

const valueAcc = (digits: List<number>, base: number): number => {

// Inv: value-acc(digits_0, base, 1, 0) = value-acc(digits, base, c, s)

};

Write a function that calculates value-acc(digits, b, 1, 0) with a
loop. Your function should have the following signature:

Question 2
Prove that value-acc(ds, b, c, s) = s + c * value(ds, b)

Question 2
Prove that value-acc(ds, b, c, s) = s + c * value(ds, b)

Question 3

Use equation value-acc(ds, b, c, s) = s + c * value(ds, b)
to rewrite the invariant so that it no longer mentions “value-acc”.

Question 4a

Invariant: value(digits_0, base) = s + c * value(digits, base)
Prove that the invariant holds when we first get to the top of the
loop.

Question 4b

Invariant: value(digits_0, base) = s + c * value(digits, base)

Prove that, when we exit, the function returns value(digits_0, base)

Question 4c

Invariant: value(digits_0, base) = s + c * value(digits, base)

Prove that the invariant is preserved when we execute the loop
body.

