
CSE 331: Software Design & Engineering Fall 2024

Quiz Section 6: Imperative Programming

Task 1 – It’s Forward Against Mine

In this problem, we will practice using forward reasoning to check the correctness of assignments. Assume
that all variables are bigints. Do not use subscripts for this problem (they are not necessary), instead
write assertions in terms of the current values of variables.

(a) Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following
code. Then prove that the stated postcondition holds.

ttx ě 4 uu

y = x - 2n;

tt uu

z = 2n * y;

tt uu

z = z - 2n;

tt uu

tt z ě 0 uu

(b) Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following
code. Then prove that the stated postcondition holds. (Reminder that with bigint, division is
truncating division.)

ttx ă 4 uu

y = x + 4n;

tt uu

x = 2n * x;

tt uu

y = y + x;

tt uu

tt y ă 16 uu

1



Task 2 – Not For a Back of Trying

In this problem, we will practice using backward reasoning to check the correctness of assignments.
Assume that all variables are bigints.

(a) Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following
code. Then prove that the stated precondition implies what is required for the code to be correct.

Feel free to simplify the intermediate assertions (i.e., rewrite them in an equivalent, but sim-
pler, way). However, the assertions you write must be equivalent to still be weakest preconditions.

ttx ă w ` 1 uu

tt uu

y = 3n * w;

tt uu

x = x * 3n;

tt uu

z = x - 9n;

tt z ă y uu

(b) Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following
code. Then prove that the stated precondition implies what is required for the code to be correct.

Feel free to simplify the intermediate assertions (i.e., rewrite them in an equivalent, but sim-
pler, way). However, the assertions you write must be equivalent to still be weakest preconditions.

ttx ą 1 uu

tt uu

y = x - 4n;

tt uu

z = 3n * y;

tt uu

z = z + 6n;

tt z ě y uu

2



Task 3 – Nothing to Be If-ed At

In this problem, we will practice using forward reasoning to check correctness of if statements. Assume
that all variables are bigints.

(a) Use forward reasoning to fill in the assertions. Then, combine the branches to assert the invariant
we know at the end of the conditional and complete an argument by cases that this invariant
implies tty ě 2uu.

Assume that x and y are both integers.

ttx ě 0 uu

if (x >= 6n) {
tt uu

y = 2n * x - 10n;

tt uu

} else {
tt uu

y = 20n - 3n * x;

tt uu

}
tt or uu

tt y ě 2 uu

3



(b) Use forward reasoning to fill in the assertions. Then, combine the branches to assert the invariant
we know at the end of the conditional and complete an argument by cases that this invariant
implies tts ě 1uu.

Assume that s and t are both integers.

tt s “ t and t ą 0 uu

if (s >= t) {
tt uu

s = s / t;

tt uu

} else {
tt uu

s = t - s;

tt uu

}
tt or uu

tt s ě 1 uu

4



Task 4 – The Only Game in Down

The function “countdown” takes an integer argument “n” and returns a list containing the numbers
n, . . . , 1. It can be defined recursively as follows:

countdown : N Ñ List

countdownp0q :“ nil

countdownpn ` 1q :“ pn ` 1q :: countdownpnq

This function is defined recursively on a natural number so it fits the natural number template from
lecture. In this problem, we will prove the following code correctly calculates countdownpnq. The
invariant for the loop is already provided.

let i: bigint = 0;

let L: List = nil;

tt Inv: L “ countdownpiq uu

while (i !== n) {
i = i+1;

L = cons(i, L);

}
ttL “ countdownpnq uu

(a) Prove that the invariant is true when we get to the top of the loop the first time.

(b) Prove that, when we exit the loop, the postcondition holds.

5



(c) Prove that the invariant is preserved by the body of the loop. To do this, use backward reasoning to
reason until the statement “i = i + 1;”. Then complete the correctness check by verifying that
the invariant with the loop condition implies the assertion you produced with backward reasoning.

6



Task 5 – Chicken Noodle Loop

The function sum-abs calculates the sum of the absolute values of the numbers in a list. We can give
it a formal definition as follows:

sum-abs : List Ñ Z

sum-abspnilq :“ 0

sum-abspx :: Lq :“ ´x ` sum-abspLq if x ă 0

sum-abspx :: Lq :“ x ` sum-abspLq if x ě 0

In this problem, we will prove that the following code correctly calculates sum-abspLq. The
invariant for the loop is already provided. It references L0, which is the initial value of L when the
function starts.

let s: bigint = 0;

tt Inv: s ` sum-abspLq “ sum-abspL0q uu

while (L.kind !== ’’nil’’) {
if (L.hd < 0n) {

s = s + -L.hd;

} else {
s = s + L.hd;

}
L = L.tl;

}
tt s “ sum-abspL0q uu

(a) Prove that the invariant is true when we get to the top of the loop the first time.

(b) Prove that, when we exit the loop, the postcondition holds.

7



(c) Prove that the invariant is preserved by the body of the loop. To do this, use backward reasoning
to reason through the last assignment statement “L = L.tl;”. Then, use forward reasoning for
each branch of the “if” statement (as in Problem 3). Finally, complete the correctness check
by verifying that each of the assertions you produced with forward reasoning implies the assertion
produced by backward reasoning immediately above the last assignment statement.

We have previously used the fact that, when L “ nil, we know that L “ conspx,Rq for some
x : Z and R : List. However, in the code, we know exactly what x and R are, namely, x “ L.hd
and R “ L.tl. Hence, when L “ nil, we actually have L “ conspL.hd, L.tlq. Feel free to use that
in your proof.

8


