
CSE 331
Software Design & Implementation

Autumn 2024
Section 6 – Floyd Logic

Administrivia

• HW 6 written released tonight, due Saturday 11/09 at
11pm
– HW 6 coding released Thursday, due Monday 11/11

at 11pm
– If using a late day for HW5 coding, get it in by

tonight at 11pm

• Check autograder output and that you submitted the
correct files (and not starter files with the same name)

• EDiquette: please! categorize your posts with the
correct homework + make it public/private
appropriately

2

Hoare Triples – Review
• A Hoare Triple has 2 assertions and some code

{{ P }}
 S
{{ Q }}

– P is a precondition, Q is the postcondition
– S is the code

• Triple is “valid” if the code is correct:
– S takes any state satisfying P into a state satisfying Q

• Does not matter what the code does if P does not hold
initially

Stronger vs Weaker – Review
•

• Different from strength in specifications:
– A stronger spec:

• Stronger postcondition: guarantees more specific output
• Weaker precondition: handles more allowable inputs

 compared to a weaker one

Forward Reasoning – Review
• Forwards reasoning fills in the postcondition

– Gives strongest postcondition making the triple valid
• Apply forward reasoning to fill in R

– Check second triple by proving that R implies Q

Question 1a: It’s Forward Against Mine

Use forward reasoning to fill in the missing assertions.

Question 1b

We can see that the last
assertion implies the
postcondition y < 16 as
follows:

Use forward reasoning to fill in the missing assertions, then
prove that the postcondition holds.

Backward Reasoning – Review
• Backwards reasoning fills in preconditions

– Just use substitution!
– Gives weakest precondition making the triple valid

• Apply backwards reasoning to fill in R

– Check first triple by proving that P implies R

• Good example problems in section worksheet!

Question 2a: Not for a Back of Trying
Use backward reasoning to fill in the missing assertions, then
prove that the precondition implies what is required.

Question 2b
Use backward reasoning to fill in the missing assertions, then
prove that the precondition implies what is required.

Conditionals – Review
• Reason through “then” and “else” branches independently and

combine last assertion of both branches with an “or” at the end
• Prove that each implies post condition by cases

Question 3a: Nothing to Be If-ed At

Question 3b – “then” branch
Use forward reasoning to fill in the assertions. Then, combine the
branches to assert the invariant we know at the end of the conditional
and complete an argument by cases that this invariant implies {{s >= 1}}

Question 3b – “else” branch

Loop Invariant – Review

• Loop invariant must be true every time at the top of the loop
– The first time (before any iterations) and for the beginning of

each iteration
• Also true every time at the bottom of the loop

– Meaning it’s true immediately after the loop exits
• During the body of the loop (during S), it isn’t true

• Must use “Inv” notation to indicate that it’s not a standard
assertion

true!{{Inv: I}}
while (cond) {
 S
}

true!
true!

true!

Well-Known Facts About Lists
•

Question 4a: The Only Game in Down

Prove that the invariant is true at top of loop the first time.

Question 4b
Prove that, when we exit the loop, the postcondition holds.

let i: bigint = 0;
let L: List = nil
{{ Inv: L = countdown(i) }}
while (i !== n) {

{{_____________________________________}}
{{_____________________________________}}
i = i + 1;
{{_____________________________________}}
L = cons(i, L);
{{_____________________________________}}

}
{{L = countdown(n)}}

Question 4c

Question 5: Chicken Noodle Loop

Question 5a

Question 5b

(b) Prove that, when we exit the loop, the postcondition holds.

Question 5c

Question 5c: Fill in & verify assertions
{{Inv: s + sum-abs(L) = sum-abs(L0)
While (L.kind !== “nil”){

{{___}}
if (L.hd < 0n) {

{{__}}
s = s + - L.hd;
{{__}}

} else {
{{__}}
s = s + L.hd
{{__}}

}
{{___}}
 {{___}}
{{___}}
L = L.tl
{{___}}

} {{ s + sum-abs(L) = sum-abs(L0) }}

