
UW CSE 331 Autumn 2024

CSE 331
Software Design & Implementation

Autumn 2024
Section 4 - Specifications

1

Administrivia

• HW 4 written portion released later today, due
Saturday 10/26 at 11 pm

– HW 4 coding portion will be released Thursday, due
Monday 10/28 at 11pm

2

Review – Specifications

• Imperative specification says how to calculate the
answer

- lays out the exact steps to perform to get the answer
- just have to translate math to typescript
- ex: Absolute value: |x| = x if x ≥ 0 and –x otherwise
-

• Declarative specification says what the answer looks
like

- does not say how to calculate it
- up to us to ensure that our code satisfies the spec
- ex: Subtraction (a – b): return x such that b + x = a

Review – Math Notation

Made up for
this class

Standard
notations

Review – Math Notation

● Side Conditions: limiting / specifying input in right column
- ex: abs : ℝ → ℝ

 abs(x) := x if x ≥ 0
 abs(x) := –x if x < 0

- conditions must be exclusive and exhaustive
● Pattern Matching: defining function based on input cases

- Exactly one rule for every valid input
ex: func f(0) := 0

f(n+1) := n for any n: ℕ

- “n + 1” signifies that input must be > 0 since smallest ℕ would be 0
- Preferred over side conditions in most cases

● Course Website > Topics > Math Notation Notes

https://courses.cs.washington.edu/courses/cse331/24au/topics/notes/math-notation.pdf

Question 1

Question 2

Review – Inductive Data Types
• Describe a set by ways of creating an element of the type

– Each is a “constructor”
– Second constructor is recursive
– Can have any number of parameters

Ex: base case recursive case

1 2 3nil
3 :: nil
2 :: 3 :: nil
1 :: 2 :: 3 :: nil

Alternative
notation:

Review – Structural Recursion

• Inductive types: builds new values from existing ones
• Structural recursion: recurse on smaller parts

– Call on n recurses on n.val
– Guarantees no infinite loops
– Note: only kind of recursion used for this class

Ex:

– Any List is either nil or of the form “cons(x, L)” for some
number x and List L (also written as “x:: L”)

– Cases of function are exclusive and exhaustive based on ⤴

Question 3

Question 3

Testing
describe(‘example’, function() {
 it(‘testBar’ function() {

 /* assert statements */
 })
})

• Use assertions to compare expected and actual output for each
test case
– assert.deepStrictEqual(expected, actual);

should be used generally

• Keep your tests simple! Don’t want to have to write tests for your
tests

• Note: Please do not submit commented out test cases to
gradescope. The course staff will not count those as valid test
cases. It is better to submit failing test cases than commented out
test cases.

Testing – Documenting
• Document which subdomain you are testing. A justification:

heuristic used, part of code it tests.

Ex:
describe(‘example’, function() {

 it(‘testBar’ function() {
/* comment describing subdomain being tested */
assert...

 })
})

Name of class being tested

Name of test (can be function being tested)

Testing – Strict vs Deep
Assertion Failure Condition
assert.strictEqual(expected, actual) expected !== actual
assert.deepStrictEqual(expected, actual) values/types of child objects are not equal

this will fail

this will pass

two different objects,
but same record values

Question 4

Question 4

Question 4

Question 5

Question 5

