
UW CSE 331 Autumn 2024

CSE 331
Software Design & Implementation

Autumn 2024
Section 3 – Full Stack Apps

1

Administrivia

• HW 3 released later today, due Monday (10/21) at
11pm

- Try to get it done on time because the next
homework is released the next day

2

Client-Side vs Server-Side – Review
• Client-Side JavaScript

– Code so far has run inside the browser
• webpack-dev-server handles HTTP requests
• Sends back our code to the browser

– In the browser, executes code of index.tsx

• Server-Side JavaScript
– Can run code in the server as well

• Returns different data for each request (HTML, JSON,
etc.)

– Can have code in both browser and server

Client-Side vs Server-Side – Review

Code only on
browser

Server-Side

VS

Client-Side

Code on browser
and server

Custom Server
• In a custom server, we can define useful routes
• Interacting with app will result in a series of requests and

responses

Steps to Writing Full Stack App (Review)

● Data stored only in the client is ephemeral
– closing the window means you lose it forever

● Write apps in this order:
1.Write the client UI with local data

– no client/server interaction at the start
2.Write the server

– official store of the data
3.Connect the client to the server

– use fetch to update data on the server before doing
same to client

Fetch Request methods

1. Method that makes the fetch
2. Handler for fetch Response
3. Handler for fetched JSON
4. Handler for errors

Making an HTTP Request (Review)
● Send & receive data from the server with “fetch”

const url = “/api/list?” +

 “category=” + encodeURIComponent(category);

fetch(url)

 .then(this.doListResp)

 .catch(() => this.doListError(“failed to
connect”))

● Fetch returns a “promise” object, has .then & .catch
methods

– then handler is called if the request can be made
– catch handler is called if could not connect to the
server at all or if “then” handler throws exception

Handling HTTP Response (Review)

● With our conventions, status code indicates data type:
– with 200 status code, use res.json() to get record

if (res.status === 200) {
 res.json().then(this.doBidJson)

.catch(() => this.doBidError("200
response is not JSON"));}

– with 400 status code, use res.text() to get error
message

● These methods return a promise of response data
– use .then(..) to add a handler called with the data
– handler .catch(..) called if it fails to parse

React Lifecycle Methods (Review)

● React includes events about its “life cycle”
– componentDidMount: UI is now on the screen
– componentDidUpdate: UI was just changed to match
render (also called when props changes)
– componentWillUnmount: UI is about to go away

● Use “mount” to get initial data from the server
– constructor shouldn’t do that sort of thing

componentDidMount = (): void => {

 fetch(“/api/list”)

.then(this.doListResp)

.catch(() => this.doListError(“connect failed”);

};

Type Checking of Request/Response

● All our 200 responses are records, so start here
–the isRecord function is provided for you

if (!isRecord(data)) {

 console.error(“not a record”, data);

 return; } // fail fast and friendly!

● Fields of the record can have any types
if (typeof data.name !== ’string’) {

console.error(“name is missing or invalid”,
data);

return;}

- For Arrays, call Array.isArray and then loop through
the elements to check typeof

Client-Server Communication Debugging Steps

1. Do you see the request in the Network tab?
– the client didn’t make the request

2. Does the request show a 404 status code?
– the URL is wrong (doesn’t match any app.get / app.post)

or
the query parameters were not encoded properly

3. Does the request show a 400 status code?
– your server rejected the request as invalid
– look at the body of the response for the error message or

add console.log’s in the server to see what happened
– the request itself is shown in the Network tab

Client-Server Communication Debugging Steps

4. Does the request show a 500 status code?
– the server crashed!
– look in the terminal where you started the server for a

stack trace

5. Does the request say “pending” forever?
– your server forgot to call res.send to deliver a response

6. Look for an error message in browser Console
– if 1-5 don’t apply, then the client got back a response
– client should print an error message if it doesn’t like the

response
– client crashing will show a stack trace

HW 3 Prep: Dijkstra’s Algorithm

● Main idea: Start at the source node and find the shortest
path to all reachable nodes.

● Input: graph with no negative edge weights, start node 𝑠
○ When a node is the closest undiscovered thing to the start,

we have found its shortest path

Node Finished Cost Prev

A False 0 -

B False ∞

C False ∞

HW 3 Prep: Dijkstra’s Algorithm

Node Finished Cost Prev

A True 0 -

B True 2 A

C True 10 3 A B

Node Finished Cost Prev

A True 0 -

B False ∞ 2 A

C False ∞ 10 A

Debugging Log

• https://comfy.cs.washington.edu/service/hw3-pra
ctice

• Make sure to save and wait for website to say
“Saved” before closing

• Be sure to keep track of each function you work
on as you debug (ex. client/server, file name,
function name)

• Example:

https://comfy.cs.washington.edu/service/hw3-practice
https://comfy.cs.washington.edu/service/hw3-practice

sec-debug coding exercise
debugging practice !!

