
UW CSE 331 Spring 2024

CSE 331
Software Design & Implementation

Autumn 2024
Section 1 – HW1 and Tools

1

Welcome

• Let’s all introduce ourselves:
– Name and pronouns
– Year
– What other classes you are taking this quarter
– Food that starts with the first letter of your name

2

Administrivia

• HW 1 released later today, due Saturday (October 5th) at 11pm

3

Coding Setup

Software we will use
• Bash: command-line shell (built-in on Mac, see course website to

download Windows version)
• Run echo "${BASH_VERSION}" to check for download

• Git: version control system (built-in on Mac, Windows version
comes with Bash, above)

• Node: executes JavaScript code on the command-line (see link
on course website to install)

• Run node –v to check for download
• NPM: package manager (comes with Node, above)
• VS Code or the editor of your choice

Node Demo

• Node: executes JavaScript code on the command-line (see link
on course website to install)

• Run node –v to check for download

• Useful for playing with the JavaScript language

• Try this to see what it does (does it crash?)
• first start node and then type this in:

const x = {a: 1, b: "two"};
console.log(x.c);

Git Demo

• Git: version control system (built-in on Mac, Windows version
comes with Bash, above)

• Almost all professionals use some kind of version control system
• git is probably the most popular today
• git can be tricky to learn / understand

• We will only need it for getting the starter code
• here is the command for sec1 (similar command for HW1)

git clone
https://gitlab.cs.washington.edu/cse331-24au-materials/sec01.git

NPM Demo

• NPM: package manager (comes with Node)

• Used to
• install all the libraries needed for our code
• compile, test, and run our code

• Use this command to install the libraries needed for sec1

npm install --no-audit

(leaving off --no-audit will generate some bogus error
messages)

VSCode Demo

• VS Code or the editor of your choice

• VS Code is relatively lightweight IDE
• primary support for JavaScript and TypeScript (good for us)

• Extensions provide support for other languages and tools

NPM Start

• NPM: package manager (comes with Node)

• Use this command to start

npm run start

• Then navigate to this URL in Chrome to see it work

http://localhost:8080

Browser Operation

• Browser reads the URL to find the server to talk to

• Contact the given server and request the given path:

request

response
(HTML)

server
name

path

24wi

Browser Operation

• HTML page can load JavaScript
• starter code’s index.html includes index.tsx

• Each time the page loads, browser executes index.tsx

request

response
(HTML)

Development Environment

• “npm run start” starts a server that the browser can contact
• server is running on this machine (localhost)
• (more on servers later this quarter…)

• This server returns index.html but adds compiled JS into the
page

• also adds code to reload if the source code is changed!

request

response
(HTML)

Custom Server (Review)

• Query Parameters (e.g. ?name=Fred) in requests (req)
const F = (req, res) => {
 if (req.query.name === undefined) {
 res.status(400).send({response: “Missing
‘name’”});
 return;
 }
 res.send(`Hi, ${req.query.name}`);
}

HTTP Terminology (Review)

• HTTP Request include:
– URL: Path and query parameters
– Method: Get/Post

• Get is used to read data on the server (can paste raw
url in browser and get result back)

• Post is used to change data on the server (cannot paste
raw url in browser)

– Body (for Post only)
• used for sending large or non-string data to server

• HTTP Response Status Codes include:
– 200 (ok)
– 400-499 (Client error)
– 500-599 (Server error)

Bug Journalling

Practice Log: https://comfy.cs.washington.edu/service/hw1-practice
Homework Log: https://comfy.cs.washington.edu/service/hw1

https://comfy.cs.washington.edu/service/hw1-practice
https://comfy.cs.washington.edu/service/hw1

Bug Journaling
• Before you start debugging: Add a bug log entry and

document the error and start time of when you started
debugging

• After you have finished debugging: Fill out the log entry with
your findings from the debugging session. This will include:
– Any experiments you ran to find the bug
– If you found the code error (if so, where)
– If you found the defect (if so, where)
– If type checking would have prevented the bug and why

• Be sure to click `Save Log` after adding an entry as to not lose
progress

• 1 bug should be 1 log entry. Do not split a single bug into
multiple log entries.

• For initial HWs, you must debug for at least 4 hours and at most
6 hours regardless of whether you fix the bug or not

Debugging Tips

• Check the easy stuff (save files, restart server)
• Create the smallest input that re-creates the error
• Look for common small errors

– using ==
– misnaming variables. Note: Type checkers will help you catch

misnamed functions/variables, not just incorrect types
– incorrect arguments

• Use Scientific Method to gain understanding of problem
• Talk through the problem with someone

