
CSE 331: Software Design & Engineering Fall 2024

Homework 8
Due: Monday, November 25th, 11pm

If you have not completed HW8 written. Close this file and finish the written component
before starting the coding parts in this worksheet.

In this assignment, you will implement the client and server portions of an application that allows
users to edit images made up of squares and to save them to and load them from a server.

Submission

Submit your final version to “HW8 Coding”. Turning in your work for this assignment is a little trickier
than usual, so follow these steps carefully!:

- cd into the directory that contains the /client and /server directories (likely called hw8-squares).

- Delete the node modules directories from each directory (you can do this in VSCode or with the
command: rm -r client/node modules && rm -r server/node modules).

- Generate a zipped file containing both of these folders.
On Mac you can run: zip -r submission.zip client/ server/.
On Windows you can select both folders, right click, and select ’Send to’ Ñ ’Compressed (zipped)
folder’, then rename the zip that is created to ’submission.zip’.

- Go to Gradescope and select the submission.zip file that was created by running the last
command.

- Make sure you get all the autograder points! If you decide to work on your app some more after
turning it in,you’ll need to run npm install --no-audit in both of the directories again to get
your node modules back.

Set up

Start by checking out the starter code using the command

git clone https://gitlab.cs.washington.edu/cse331-24au-materials/hw8-squares.git

Install the node modules: Create two terminals. Navigate to the client directory in one and the
server directory in the other, and run npm install --no-audit in both.

To run the app, you’ll need to run the command npm run start in both the client and server

directories. Then navigate to where the client is running http://localhost:8080/. Currently, you’ll
get a few “Unused variable” warnings, but if you dismiss them with the ‘X’ you should see a square on
the screen, then try clicking around.

1

Right now there’s not much functionality, but later, the app will allow users to create and save
designs of colored squares. This video includes a walk-through of what the final product looks
like as well as an introduction to some important parts of the starter code. You should absolutely
watch this video and read through the starter code before starting any parts. (Note: your app needs to
work like the app in the video but it doesn’t need to look exactly the same.) Here are some example
designs:

It is difficult to try to get all the pieces working at once. Instead, you should write one piece at a
time, testing it individually to make sure it works. Once the main pieces work individually, you can put
them together.

It will be useful to review the content from earlier in the quarter on UI code, making server routes,
server requests, and updating client-side state after a request is complete. As before, we expect you to
use lecture and section examples them as a template, but it is essential that you understand what those
examples are doing!

Note that mutation is not permitted in any of the code on the /client side. Mutation on
the /server side is allowed.

2

https://youtu.be/ntF_TKo0CqE

Squares

Recall the type definitions of Color, Square, Dir, and Path from the written portion.

These types are already defined for you in square.ts. That file also includes functions toJson and
fromJson that convert between Square and JSON, which we represent as “unknown” in TypeScript.

Task 2 – Couldn’t Square Less [16 pts]

Implement the two operations (find and replace) from the written portion. These will be helper functions
for parts of the UI we create in the next question.

Write your implementation in the provided function declarations: findSquare and replaceSquare

in square.ts. Your implementation should be straight from the spec, though recall the note from the
written part which explains that in math we were treating an “undefined” result as a sort of Error case;
in your implementation, you should throw an actual Error in these cases rather than return undefined.

Complete the TODO to copy your math definition of replace into the comment above the function.

Make sure you test these operations before moving to the next problem. Tests you write should go
in square test.ts. Again, debugging other parts of the client will be easier if you can be confident
that any errors you see are due to bugs in that code and not these operations.

Drawing Squares

The file square draw.tsx includes a SquareElem tag that can display a square. (The code is just a
recursive translation from one tree, Square, to another, JSX.Element. However, arranging these so
they look right on the page is a little tricky, so we provided this for you.)

You can also tell SquareElem to “select” a specific solid square, by giving the path to it. That
causes the square to display in a slightly different color. Solid squares also change color when the
mouse hovers over them. Lastly, SquareElem allows you to provide a callback function in the onClick
property, which will be called when the user clicks on any solid square, providing you a path to the one
that was clicked on.

The provided code always displays a single split square, with four solid square children. When the
user clicks on any of the squares, it tells them to stop that. You can get rid of this code, we’ll be
enhancing the app to take advantage of these properties of SquareElem.

Task 3 – Rage Split [16 pts]

In FileEditor.tsx there is a mostly empty React component FileEditor. Instead of rendering
a SquareElem in App, as it currently does, change App to render an FileEditor instead, and the
FileEditor will render the SquareElem. This will allow us to add some design editing functionalities
in FileEditor and other functionalities in the App

3

https://courses.cs.washington.edu/courses/cse331/24au/homework/homework08-written.pdf

When a square element is selected, the FileEditor will allow the user to perform the following
operations to edit the square and create a design:

1. Change to a different solid color.

2. Split that square into four parts (Initially, 4 solid squares of the same color).

3. Merge the square with its siblings, i.e., replace its parent with a single solid square of that color.

The starter code for FileEditor includes some TODOs as guidance, but you should read through
the following notes carefully before starting and revisit them later also:

- The first thing to think about is what state you need to keep track of in order to implement these
operations. We include state in the starter that we think will be sufficient, so check that out and
make sure you understand their purpose.

- You can use any HTML you want to let the user invoke these operations, but one simple
choice would be BUTTON (for split & merge) and SELECT (for change color). Note that
the SquareElem callback onClick already returns the path to the selected square.

- You may find some functions from list.ts useful in this part! Take note of the new function
prefix() which returns the first n elements of a given list.

- When any operation wants to change the square that is displayed, calculate the new Square with
the changes, and then call setState with the new Square. That will cause React to invoke
render again and display the new UI. Remember the Square related functions in square.ts.

- While it is never a bad thing to write unit tests, for UI like this, you really need to see it in the
browser to know that it is really working. For that reason, perform manual testing; however, you
should follow the usual rules for deciding which cases to try manually. (To be clear, we will not
expect you to turn in any unit tests for your UI code.)

4

Task 4 – One Foot in the Save [16 pts]

Implement the server portion of the application by adding routes to perform the following operations:

1. Save the contents of a file with a given name.

2. Load the last-saved contents of a file with a given name.

3. List the names of all files currently saved.

The server should allow the file contents to be any valid JSON, which we represent in TypeScript
as the “unknown” type. The lack of type information should not be a problem as it should not be
necessary to examine the contents of the file. We simply store it in save, and return it in load.

Properly test all of these operations before moving to the next problem. Debugging the client-server
interaction will be easier if you can be confident that any errors you see are due to bugs in the interaction
itself. We have never had you write tests for server code before, so we have provided an example test
in routes test.ts, and we will be lenient in grading your tests. You should attempt to write a couple
tests per route you build, but if you do not meet all our testing expectations, that is okay.

Additionally, remember to incorporate appropriate error checking.

Some additional notes:

- Don’t worry too much about the idea of a “file” if that’s confusing. You can think of it as some
data stored with a label name. So this is essentially a way to store and lookup values associated
with names.

- In assoc.ts, we have provided an association list type, as discussed in lecture, called AssocList.
You should use this to store file names and content. You should carefully read through the
helper functions and their documentation in assoc.ts to avoid re-implementing already provided
functionality.

- The provided code just has a dummy route to remind you what the code looks like for creating
and testing routes. Feel free to delete it.

- For debugging/testing purposes, we have provided a “resetForTesting” function that you can call
at the end of each test to remove any files you saved during the test. (Not required to use, but
encouraged.)

- It is sufficient for the Load and List operations to be GET operations since they are simple requests
that just return data, but the Save operation requires passing in the file contents, so we will need
to use a POST request rather than GET so we can accept this contents through the body of the
request.

5

Task 5 – Pick-or-Treat [16 pts]

Change the App component to have a starting screen that asks the user to type in a name for their
square design before opening the page to to edit the squares. This starting screen with the text box
should be in the FilePicker component. As this is the starting screen, this would be a good time to
adjust the initial page view in App.

Then, add a “Save” button, in the FileEditor, that causes the square design they have created to
be saved under the name they typed in.

It is a cleaner design to have all the file management code in App, so we recommend having the App
pass an onSave callback to the FileEditor component. When this is invoked, the App should send
the server a “file” (the design’s name and the current state of the edited design) to be saved.

Add a “Back” button as well, in the FileEditor component, that goes back to the starting screen.
That should also be a callback. The “Back” button should not trigger a file to be saved, and a “Save”
should not cause the page to change to the starting screen.

Run the app a few times and save designs under different file names to test this functionality. It
may be useful to use console.log to print out the state of the app at the top of render() to see if
the saved files are properly added to your association list.

Task 6 – Service With a File [16 pts]

Change the FilePicker component to show the user the names of all the existing design files. Clicking
on any of them should open that file in its last-saved state in the FileEditor and allow them to
continue editing it. The functionality to pick a name and create a new design from scratch should still
be there as well.

You will need to utilize a couple of the routes that you implemented in Task 4 to implement this
functionality.

You can use any HTML you want to display the existing file names to the user, but one simple
choice would be / (unordered list / list items within it), with each containing an <a> (link)
with the name of that file. The onClick event of a link will be called when they click on it. (You can
set the href tag as href=‘‘#’’ so that the link itself does nothing.)

Congratulations! Now you have a complex, fully functional, client-server squares application! Give
yourself a pat on the back. And, please celebrate by creating a fun squares design and posting it in the
“Square Designs” thread on Ed :)

6

Task 7 – Extra Credit: Picked the Wrong Week to Stop Sniffing New [0 pts]

Add any new features that seem useful! You will get points for any feature that works correctly and
seems like it would be valuable to the user.

If you complete any extra credit, please create a file in client/src called “extra credit.text”
and in it list all new features that you added and how to invoke them (if it’s not obvious in the UI).
This will help us while grading to make sure we don’t miss you EC attempts!

7

