
CSE 331: Software Design & Engineering Fall 2024

Homework 6
Due: Saturday, November 9th, 11pm

This worksheet contains only the written parts of HW6. The coding instructions will be released
Thursday (11/07) and be due Monday (11/11).

Submission

After completing all parts below, submit your solutions as a PDF on Gradescope under “HW6 Written”.
Don’t forget to check that the submitted file is up-to-date with all written work you completed!

Make sure your work is legible and scanned clearly if you handwrite it, or compiled correctly if you
choose to use LaTeX. Make sure you match each HW problem to the page with your work. If your work
is not readable or pages are not assigned correctly, you will receive a point deduction.

Reasoning rules

Apply the following rules to all reasoning problems unless stated otherwise.

- Assume that all code is TypeScript, and number variables are bigints.

- You should not use subscripts (unless we explicitly tell you otherwise or introduce subscriptted
variables in the problem to refer to a variable’s value when the function was initially called).
Instead, write all assertions in terms of the current value of variables.

- Arithmetic simplification is not required, but if you choose to do so, you are always permitted
and encouraged to show your work for any simplification or combination of facts, but please do
so clearly to the side of your final assertions.

- All assertions should use math notation.

- Use ‘::’ instead of ‘cons’. (This also applies within proofs.)

- If you choose to abbreviate any function names within assertions, you must clearly define that
abbreviation at the top of the problem.

- If not explicitly stated in the instructions, you may reason forward or backward.

- There’s no need to include the value of constant variables in assertions.

1

Task 1 – The House That Back Built [15 pts]

After filling in the assertions, prove the implication that remains. These do not need to be formal
proofs by calculation, English sentences explaining the facts can be sufficient and more intuitive (see
the section 6 worksheet solutions for an example). Though we recommend you try to write a proof by
calculation to make sure you don’t forget any steps.

1. Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following
code. Then, prove that the stated postcondition holds.

tt y ą 7 and z ą 1 uu

x = 3n * y + 1n;

tt uu

y = y - 7n;

tt uu

z = z * y;

tt uu

ttx ă 3z ` 24 uu

2. Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following
code. Then, prove that the stated precondition implies the result from reasoning.

tt z ą 0 uu

tt uu

x = -z;

tt uu

z = z - 1n;

tt uu

y = x - 1n;

tt y ď z uu

2

3. Use forward reasoning to fill in the assertions. Then, prove, by cases, that what we know at the
end of the conditional implies the post condition.

Note that because we have 3 branches in our conditional, the fact we know just after the
conditional will have 3 cases “or”ed together.

ttx ě 1 and y “ x2 uu

if (y < 20n) {
tt uu

y = y + 4n;

tt uu

} else if (y < 28n) {
tt uu

y = (y / x) + 1n;

tt uu

} else {
tt uu

y = y / x;

tt uu

}
tt or or uu

tt y ą 4 uu

3

Task 2 – Hula-Loop [10 pts]

In this problem, we will prove the correctness of a loop that finds the quotient of x divided by 5, i.e.,
the largest value y such that 5y ď x. To say that y is the largest such value means that any larger
value would not work, i.e., that 5py ` 1q ą x.

We denote the initial value of x at the top by x0. This is explicitly stated in the precondition as
the fact “x “ x0”. The first two facts of the postcondition say that y is the quotient of x0 divided by
5. The third fact says that x is the remainder, i.e., the remaining amount not divisible by 5.

This loop calculates the quotient without division. Instead, it just uses subtraction. It operates by
increasing y and decreasing x each time around. The first part of the invariant says that the distance
from x0 down to 5y (i.e., x0 ´ 5y) is the same as the distance from x down to 0 (i.e., x´ 0 “ x). The
second part of the invariant says that x has not moved below 0 (i.e., x ě 0).

ttx “ x0 and x0 ě 0 uu

let y: bigint = 0n;

tt Inv: x0 ´ 5y “ x and x ě 0 uu

while (x >= 5n) {
y = y + 1n;

x = x - 5n;

}
tt 5y ď x0 and x0 ă 5py ` 1q and x “ x0 ´ 5y uu

1. Prove that the invariant is true when we get to the top of the loop the first time.

2. Prove that, when we exit the loop, the postcondition holds.

3. Prove that the invariant is preserved by the body of the loop. Use either forward or backward
reasoning (your choice) to reduce the body to an implication and then check that it holds.

4

Task 3 – Loop Dreams [15 pts]

In this problem, you will write a loop that finds the integer square root of x, i.e., the smallest integer v
such that x ď v2. That v is the smallest such integer means that no smaller integer would work, i.e.,
that pv ´ 1q2 ă x. These two facts are the postcondition of the loop below.

It is only possible to have a number smaller than x if x ą 0, so that is required by the precondition.
Your loop should calculate the square root using only addition. It will operate by increasing v until

it is the integer square root of x. In order to do this without multiplication or subtraction, we will need
to keep track of two other values. The variable “w“ stores 2v ´ 1, and the variable y stores v2. The
invariant states these two facts and the first part of the postcondition, namely, that pv ´ 1q2 ă x.

The basic structure of the loop is as follows. You will fill in the missing pieces below.

ttx ą 0 uu

let v: bigint = ;

let w: bigint = ;

let y: bigint = ;

tt Inv: pv ´ 1q2 ă x and w “ 2v ´ 1 and y “ v2 uu

while () {
v = v + 1n;

w = ;

y = ;

}
tt pv ´ 1q2 ă x and x ď v2 uu

1. Fill in the initialization code above the loop. Then, prove that the invariant holds with your code.

2. Fill in the loop condition. Then, prove that the post condition holds when the loop exits.

3. The first line of the body of the loop increases v by 1. Fill in the updates to w and y so that the
invariant remains true with a v that is one larger.

Give the two lines of code. Then, use either forward or backward reasoning (your choice) to
reduce to an implication and prove that it holds, showing that the invariant remains true.

5

Task 4 – If It Ain’t Broke, Don’t Mix It [20 pts]

We can define the set of primary colors as an enum-like inductive data type as follows:

type Color :“ RED | YELLOW | BLUE

Purple, green, and orange can be expressed as 50/50 mixtures of pairs of these colors. Specifically,
purple is 50% red and 50% blue, and green is 50% red and 50% yellow.

The two functions, amt-purple, amt-green : ListxColory Ñ R, take lists of primary colors and return
the amounts of purple and green, respectively, present in the list:

amt-purplepnilq :“ 0

amt-purplepRED :: csq :“ 0.5 ` amt-purplepcsq

amt-purplepYELLOW :: csq :“ amt-purplepcsq

amt-purplepBLUE :: csq :“ 0.5 ` amt-purplepcsq

amt-greenpnilq :“ 0

amt-greenpRED :: csq :“ 0.5 ` amt-greenpcsq

amt-greenpYELLOW :: csq :“ 0.5 ` amt-greenpcsq

amt-greenpBLUE :: csq :“ amt-greenpcsq

6

In this problem, we will prove the correctness of a loop that finds the amount of purple and green
present in a list L of primary colors. The loop operates by moving forward through the list, updating L
at each point, to keep track of where we are, until the list is empty. As usual, L0 refers to the initial
value of the variable L, which is the full list.

The variables “p” and “g” keep track of the amount of purple and green, respectively, in the part
of the list processed so far. The first part of the invariant says that the amount of purple in the full list
is equal to p plus the amount remaining in the list L. The second part states a similar fact for green.

The postconditions states that p and g contain the full amount of purple and green, respectively,
in the full list.

ttL “ L0 uu

let p: bigint = 0n;

let g: bigint = 0n;

tt Inv: amt-purplepL0q “ p ` amt-purplepLq and amt-greenpL0q “ g ` amt-greenpLq uu

while (L.kind !== "nil") {
if (L.hd.kind === "RED") {

ttP1 : Inv and uu

ttQ1 : uu

p = p + 0.5;

g = g + 0.5;

} else if (L.hd.kind === "YELLOW") {
ttP2 : Inv and uu

ttQ2 : uu

g = g + 0.5;

} else { // "BLUE"

ttP3 : Inv and uu

ttQ3 : uu

p = p + 0.5;

}
L = L.tl;

}
tt p “ amt-purplepL0q and g “ amt-greenpL0q uu

1. Prove that the invariant is true when we get to the top of the loop the first time.

2. Prove that, when we exit the loop, the postcondition holds.

3. Use forward reasoning to fill in each of the Pi’s above and backward reasoning to fill in each of
the Qi’s above.

Note that L ­“ nil means that we can write L “ L.hd :: L.tl since “::” is the only non-nil
constructor.

7

4. Prove that the invariant is preserved by the loop body by showing that each Pi implies each Qi.

8

Task 5 – Barking Up the Wrong Three [20 pts]

Suppose we define the set of base-3 digits as

type Digit :“ 0 | 1 | 2

Then, we can represent number written in base 3 as a ListxDigity.

The following function, non-zeros : ListxDigity Ñ N, counts the number of non-zero digits in a
given base-3 number:

non-zerospnilq :“ 0

non-zerosp0 :: dsq :“ non-zerospdsq

non-zerosp1 :: dsq :“ 1 ` non-zerospdsq

non-zerosp2 :: dsq :“ 1 ` non-zerospdsq

The next function, even : ListxDigity Ñ B, determines whether the given base-3 number is even:

evenpnilq :“ true

evenp0 :: dsq :“ evenpdsq

evenp1 :: dsq :“ not evenpdsq

evenp2 :: dsq :“ evenpdsq

For this problem, we can take this as the definition. In the extra credit problem, we will prove that this
function correctly checks whether the number represented by a sequence of base-3 digits is indeed even.

9

In this problem, you will write a loop that, at the same time, calculates the number of non-zero digits,
stored in a variable a, and whether the digits are even, stored in a variable b. The two facts of the
postcondition state that these variables contain the values of these two functions on the full list.

Your loop should calculate these values by making a single pass through the list from front to back,
exiting when you reach the end of the list.. The first fact of the invariant states that the number of
non-zero digits in the whole list is a plus the number of non-zero digits remaining in L. The second
fact of the invariant states that the number is even exactly when the evenness of the remaining digits
matches the value of b (i.e., they are both true or both false).

The basic structure of the loop is as follows. You will fill in the missing pieces below.

ttL “ L0 uu

let a: bigint = ;

let b: boolean = ;

tt Inv: non-zerospL0q “ a ` non-zerospLq and evenpL0q “ pb “ evenpLqq uu

while (L.kind !== "nil") {
...

// fill in the code here

...

L = L.tl;

}
tt a “ non-zerospL0q and b “ evenpL0q uu

1. Fill in the initialization code above the loop. Then, prove that the invariant holds with your code.

Note that, if x is a boolean, then x “ true is true exactly when x is, and x “ false is true
when not x is.

2. Prove that the post condition holds when the loop exits.

3. Fill in the missing code in the body of the loop so that the invariant is preserved when L moves
forward to the next element of the list.

Then, use either forward or backward reasoning (or both) to reduce correctness of the loop
body to implication(s) and prove that they hold.

Hint: note that, if b and c are booleans, then “not b “ c” is the same as “b “ not c”. Both
expressions are true exactly when the values of b and c are different (one is true and one is false).

10

Task 6 – Extra Credit [0 pts]

We can calculate the value represented by a given sequence of digits as follows:

valuepnilq :“ 0

valuepd :: dsq :“ d ` 3 ¨ valuepdsq

When we write a base-3 number like “120”, the first digit “1” represents the 1ˆ32, so it is the “highest
order” digit. Storing the high order digits at the front of a list is a called “big endian” representation.
The function above instead assumes that the “lowest order” digits are at the front of the list, so the
same number would be represented as 0 :: 2 :: 1 :: nil. This is called a “little endian” representation.
The two representations are equally valid, but little endian is easier for us in this instance.

Prove that the function evenpdsq above correctly calculates whether valuepdsq is even. Specifically,
prove by structural induction that ”valuepdsq is even” “ evenpdsq. Feel free to use standard facts about
even and odd such as “even + odd = odd”.

11

