
CSE 331: Software Design & Engineering Fall 2024

Homework 5
Due: Saturday, November 2nd, 11pm

This worksheet contains only the written parts of HW5. The coding instructions will be released
Thursday (10/31) and be due Monday (11/4).

While working on this homework, it may be useful to refer to the first page of the Section 5 worksheet
where we have a list of function definitions for easy access. As usual, the section tasks are also good
practice for the tasks in this homework.

In all proofs, you must use the ‘::’ instead of ‘cons’.

Submission

After completing all parts below, submit your solutions on Gradescope. The collection of all written
answers to problems described in this worksheet should be submitted as a PDF to “HW5 Written”.

Don’t forget to check that the submitted file is up-to-date with all written work you completed!

You may handwrite your work (on a tablet or paper) or type it, provided it is legible and dark enough
to read. If you’re using LaTeX, please make sure your file compiles correctly. When you turn in on
Gradescope, please match each HW problem to the page with your work on it. If you fail to have
readable work or assign pages, you will receive a point deduction.

1



Task 1 – Twice to Meet You [18 pts]

The functions twice-evens and twice-odds, both of type List Ñ List, take a list as input and return the
list where the numbers at even and odd indexes, respectively, are doubled and the others are left as is.
We can define these recursively, in terms of each other (“mutual recursion”), as follows:

twice-evenspnilq :“ nil

twice-evenspx :: Lq :“ 2x :: twice-oddspLq

twice-oddspnilq :“ nil

twice-oddspx :: Lq :“ x :: twice-evenspLq

Now, suppose that you see the following snippet of TypeScript code in some large TypeScript
program. The code in the snippet uses len, sum, twice evens, and twice odds, all of which are
TypeScript implementations of the mathematical functions with the same names.

const x = sum(twice_evens(L));

const y = sum(twice_odds(L));

if (len(L) === 2)

return x + y; // = 3 * sum(L)

The comment shows the definition of what should be returned, but the code is not a direct translation
of that. Below, we will use reasoning to prove that the code is correct.

Note that, if lenpLq “ 2, then L “ a :: b :: nil for some integers a and b, as we have previously
proven in section. We will use that below. (Be sure to use “::” notation in your answers.)

(a) Using the fact that L “ a :: b :: nil, prove by calculation that sumpLq “ a` b.

(b) Using the same fact, prove by calculation that sumptwice-evenspLqq “ 2a` b.

(c) Using the same fact, prove by calculation that sumptwice-oddspLqq “ a` 2b.

(d) Prove that the code is correct by showing that x` y “ 3 sumpLq, i.e., that

sumptwice-evenspLqq ` sumptwice-oddspLqq “ 3 sumpLq

You are free to cite parts (a-c) in your calculation since we know that L “ conspa, conspb, nilqq
holds on the line with the return statement. (You can write, e.g., “part (a)” as your explanation
on the line that uses the fact proven in part (a).)

2



Task 2 – Swap ’Til You Drop [16 pts]

This problem uses the following function, swap : List Ñ List, that swaps adjacent values in a list:

swappnilq :“ nil

swappa :: nilq :“ a :: nil

swappa :: b :: Lq :“ b :: a :: swappLq

Lists of length 0 and 1 are left as is, whereas if the list has length 2 or more, the order of the first two
elements are swapped before we recurse on the rest of the list after those two elements.

Suppose you see the following snippet in some TypeScript code. It uses len and swap, which are
TypeScript implementations of the mathematical functions with the same names.

if (len(L) === 3)

return cons(1, cons(2, L)); // = swap(swap(cons(1, cons(2, L))))

The comment shows the definition of what should be returned, but the code is not a direct translation
of those. Below, we will use reasoning prove that the code is correct.

The code above uses cons, but be sure to use “::” instead in your calculations.

(a) Let x be an integer. Prove that swappswappx :: nilqq “ x :: nil.

(b) Let x and y be integers and R be a list. Prove that

swappswappx :: y :: Rqq “ x :: y :: swappswappRqq

(c) Let a, b, c, d, e be integers and L “ a :: b :: c :: d :: e :: nil, i.e., L is some list of length 5. Prove
that swappswappLqq “ L.

You should apply part (a) once and part (b) multiple times (with different choices of x and y)
rather than performing the same calculation again here. (Remember, that those facts we proved
hold for any values of x and y.)

(d) Prove that the code is correct by showing that swappswappconsp1, consp2, Lqqqq “ consp1, consp2, Lqq,
using the fact that L has length 3, i.e., that L “ u :: v :: w :: nil for some integers u, v, w.

Feel free to apply prior parts, if useful, rather than performing calculations again.

3



Task 3 – I Neg To Differ [11 pts]

In Task 3 of Homework 4, we defined a function ns : ZÑ Z that encoded characters (stored as integer
values in the range 0–25) as other characters. In that problem, we claimed that our cipher, which
encodes characters, also decodes them. In this problem, you will prove that is the case.

(a) For convenience, repeat your definition of ns from Task 3.

If you know there was an error in your answer from Homework 4, you are free to correct it
here. (Be sure to explain what the problem was if you give a different answer.)

(b) Let j be an integer. Prove by cases that nspnspjqq “ j.

Hint: If we know that a ď j ď b and c is any integer, then we know that c´b ď c´j ď c´a.
(The values a and b switch sides because they are negated.) Also, note that depending on how
you wrote your definition for ns, your proof may be easier if your cases are more fine-grained than
those in your definition.

4



Task 4 – Fish and Skips [15 pts]

The functions skip and keep, both of type List Ñ List, both drop every other element of the list, with
skip skipping the first element (and keeping the second) and keep keeping the first element (and skipping
the second). They are defined via mutual recursion as follows:

skippnilq :“ nil

skippx :: Lq :“ keeppLq

keeppnilq :“ nil

keeppx :: Lq :“ x :: skippLq

For example, with these definitions, we have skipp1 :: 2 :: 3 :: 4 :: nilq “ 2 :: 4 :: nil, and we also have
keepp1 :: 2 :: 3 :: 4 :: nilq “ 1 :: 3 :: nil.

We will also need the following function, echo : List Ñ List, which returns a list with an extra copy
of every element, producing a list of twice the original length:

echopnilq :“ nil

echopx :: Lq :“ x :: x :: echopLq

For example, we have echop1 :: 2 :: nilq “ 1 :: 1 :: 2 :: 2 :: nil.

(a) Prove, by structural induction, that skippechopSqq “ S for any list S.

(b) You see the following snippet in some TypeScript code:

// Return skip(1 :: 2 :: echo(L)), where + is concat

return cons(2, L); // much faster!

The comment tells us what it should return, but the code does not return that, so we will need
to use reasoning to check that it is correct.

Show that this code is correct by proving that skipp1 :: 2 :: echopLqq “ 2 :: L. Feel free to
cite part (a).

5



The next problem will make use of some lists that do not contain integers. We can generalize our
inductive List data type to allow it to store any type of data as follows:

type ListxT y :“ nil | consphd : T, tl : ListxT yq

A declaration like this is called a “generic” (or “parameterized”) type. T is a type parameter, which we
can fill in with any type we want. Filling in a different value for T gives us a different type. Hence, this
one definition is creating infinitely many new types.

The type ListxT y defines a list that stores elements of type T . The “hd” argument of cons is now
a T rather than Z. If we wish to have a list of integers, we would now write that as ListxZy.

The next problem will make use of the following functions that operate on the generic list type.
The function sum : ListxZy Ñ Z, which adds up the numbers in a list, is defined as follows:

sumpnilq :“ 0

sumpx :: xsq :“ x` sumpxsq

The function tail : ListxZy Ñ ListxZy, which returns all of the elements in the list except for the
first one, is defined as follows:

tailpnilq :“ nil

tailpx :: xsq :“ xs

The function zip : pListxZy, ListxZyq Ñ ListxpZ,Zqy, which turns a pair of lists into a (single) list of
pairs of numbers at the same positions in the two lists, is defined as follows:

zippnil, ysq :“ nil

zippxs, nilq :“ nil

zippx :: xs, y :: ysq :“ px, yq :: zippxs, ysq

The function mult : ListxpZ,Zqy Ñ ListxZy, which turns a list of pairs into a list of the products of
the paired numbers, is defined as follows:

multpnilq :“ nil

multppx, yq :: rq :“ xˆ y :: multprq

6



Task 5 – Sum As You Are [20 pts]

We wish to calculate the following expression, where xs : ListxZy is a list of integers:

sumpmultpzippxs, tailpxsqqqq ` sumpxsq

The expression “multpzippxs, tailpxsqqq” creates a list containing the product of each number and
the one after it. For example, if xs “ 1 :: 2 :: 3 :: nil, then we have:

multpzipp1 :: 2 :: 3 :: nil, tailp1 :: 2 :: 3 :: nilqqq

“ multpzipp1 :: 2 :: 3 :: nil, 2 :: 3 :: nilqq def of tail

“ multpp1, 2q :: zipp2 :: 3 :: nil, 3 :: nilqq def of zip

“ multpp1, 2q :: p2, 3q :: zipp3 :: nil, nilqq def of zip

“ multpp1, 2q :: p2, 3q :: nilq def of zip

“ p1ˆ 2q :: multpp2, 3q :: nilq def of mult

“ p1ˆ 2q :: p2ˆ 3q :: multpnilq def of mult

“ p1ˆ 2q :: p2ˆ 3q :: nil def of mult

A “straight from the spec” implementation of this expression would make four passes over the list,
each running in Opnq time, where n “ lenpxsq, so the overall running time is Opnq. However, the calls
to zip and mult both create new lists, so the heap memory used is also Opnq even though we are only
returning one number. In this problem, you will write a more memory efficient implementation.

(a) Define a single recursive function f : ListxZy Ñ Z so that fpxsq calculates the expression
sumpmultpzippxs, tailpxsqqqq ` sumpxsq.

Use the above example as a guide for finding the pattern needed in your recursive case, but
remember that the example only goes over the mult portion on the expression, don’t forget the
rest of the expression!

(b) Prove that your code is correct by structural induction, i.e., that this holds for any list xs : ListxZy:

fpxsq “ sumpmultpzippxs, tailpxsqqqq ` sumpxsq

Hint: You will likely need to handle the case of a list of length 1 separately from the others.

7


