
CSE 331: Software Design & Engineering Fall 2024

Homework 1
Due: Saturday, October 5th, 11pm

Ensure you’ve completed the course Software Set-up, then check out the starter code for this assignment:

git clone https://gitlab.cs.washington.edu/cse331-24au-materials/hw1-parsing.git

Navigate to the hw1-parsing directory and run npm install --no-audit.

In Tasks 1–3, you are asked to think through a few programming problems and type in your solutions.
In Task 4, on the next page, we will explain how to test out your solutions to see if they work. For
reasons that will be clear then, you must wait until Task 4 to test them out.

Task 1 – A Pain in the Parse [25 pts]

Implement the function parseBuildings in src/routes.js. This function is passed in a list of lines
of text (from the file data/campus buildings.csv), each of which is a string of the form:

MOR,Moore Hall,2317.1749,1859.502

with commas separating the four provided pieces of information about the building.
Parse each line into a record containing fields called shortName, longName, x, and y, corresponding

to the four parts above. The two names should be strings, while x and y should be numbers. Each of
these records should be added to the buildings array.

See the final page for descriptions of functions that may be helpful. For all tasks, you should not use
functions or methods other those listed there.

Task 2 – It’s Name Time [25 pts]

Implement the function findByName in routes.js. This function should find buildings (from Task 1)
whose long names contain the text provided in the query parameter called text. The “query” field of
the request object, req, is a record containing each of the query parameters as a field.

Your code should send back (via the response object, res) a record containing a single field called
“results” that contains an array of the buildings found. Each building should be a record as above.

Your solution must follow these additional rules:

‚ Return at most 3 results. If more than 3 buildings contain the provided text in their long names,
then return the first three buildings from the original list.

‚ Your text matching should be case-insensitive. I.e., searching for “engineering” should find “Paul
G. Allen Center for Computer Science & Engineering” even though the case is different.

Task 3 – It Takes All Finds [25 pts]

Implement the function closest in routes.js. This function should find the three closest buildings
to the px, yq position provided in the query parameters x and y.

Your code should send back the results in the same format as in Task 2.

1

https://courses.cs.washington.edu/courses/cse331/24au/resources/software-setup.html

Task 4 – Every Log Has Its Day [25 pts]

In this task, you will try out your solutions to Tasks 1–3. Finding the bugs and analyzing their causes
is the most important part of this assignment. For that reason, we require you to carefully track and
document your time spent debugging. For each bug, you must also provide the following information:

‚ What (incorrect) behavior you saw that told you there was a bug.

‚ How many minutes it took you to find the bug.

‚ What kind of experiments you performed to try to locate the bug (checking the network tab,
scanning for typos, Console.logs, etc.)

‚ Where an error first occurs in the code that leads to the incorrect behavior.

‚ What the defect was that caused that bug (if you ever found it).

‚ Whether a (Java) type checker would have spotted the bug.

Note that the type checker not only finds cases where data of the wrong type is used (e.g., a
number where a string is expected) but also when the names of fields or functions are misspelled.

We have provided a debugging log website for you to use to record this information. Some tips and
rules for using the site:

‚ Don’t forget to save! Hit the “Save Log” button to avoid losing your entries.

‚ Keep your log on standby. Having the log open before you run your app and as you test it will
help you remember to write everything down. Even a simple typo is a bug, and you should log it!

‚ Keep your logging brief. We want to understand your process and diagnosis, but we prefer to read
short descriptions over paragraphs.

Since debugging is the most important part of this assignment, you can still get full credit for submitting
an incorrect solution provided that you have made a reasonable attempt at Tasks 1-3 and fully document
4 hours (240 minutes) of debugging. You are forbidden from spending significantly more than 4 hours
debugging (if you go over by a few minutes, that’s okay). Note that the 4 hour time limit applies only
to this debugging task, the time to complete Tasks 1-3 should not be counted.

If you think your solution is correct, and you have not yet reached 4 hours of debugging, be careful!
Have someone else try out your app and see if they catch any bugs.

To try your solution, open the file public/index.html and add the following line just before </body>:

<script src="ui.js"></script>

Next, in the terminal, run the command npm run start. Finally, open http://localhost:8080 in
Chrome. You should see a campus map. Typing in the input box and pressing “Search” should perform
a “find by name” search. Clicking anywhere in the map should perform a “closest” search. In both
cases, the results you returned should be shown both on the map and in a list below the input box. If
they are not, then there is a bug. Good hunting!

2

https://comfy.cs.washington.edu/service/hw1

The following is a set of examples of app inputs and the expected outputs to try with your app. You
should definitely experiment with inputs beyond these.

‚ Input “phy” in the input box and “Search”, and the results and map should appear as follows:

‚ Input “SciEnCe” in the input box and “Search”, and the results and map should appear as follows:

‚ Click the Women’s Softball Field on the map, and the results and map should appear as follows:

3

‚ Click the University Bookstore on the map, and the results and map should appear as follows:

Note that the placement of the mouse for a click may cause the order of “closest” search results to
differ, but provided the click is within the vicinity described in these examples, the contents should be
the same. For “find by name” search results, both the order and contents should be identical.

Submission

After completing Task 4, download your debugging log:

1. Select “View Log” to open all of your log entries

2. Select File ą Print or ctrl+P/Command+P to open the print dialog

3. Set the print destination as “Save as PDF” and “Save”

4. Rename the downloaded PDF as “DebuggingLog.pdf”

Then, submit the downloaded log and your code to the “HW1” assignment on Gradescope. The
assignment expects exactly the following files:

DebuggingLog.pdf routes.js

After you submit your work, an autograder will run to verify you have submitted the correct files;
wait for it to finish and check that the submission looks correct. Don’t forget to make sure that the
submitted files are up-to-date with all implementation and debugging you completed!

4

Useful Library Functions & Methods

This page contains library functions (and methods) you can use in your solution. You will also need to
use the functions shown in lecture and section for sending server responses.

To keep grading simpler, please restrict yourself to only those listed here. Specifically note that the
functions from the Math library are not allowed, but mathematical operations (+ * - / **) are.

You can read more about these allowed functions (as well as many other library functions) by
searching in the Mozilla Developer Network documentation on the web.

Global Functions

parseFloat Takes a string as an argument and returns the floating point value it describes. For
example, a call to parseFloat("3.14") would return the floating point value 3.14. This returns
NaN (not a number) if the string does not represent any valid number.

isNaN Returns true if the value passed is NaN, otherwise returns false.

Fields and Methods of Array

length The length field stores the length of the array, e.g., [1, 2, 3].length is 3.

push Adds the value passed in as an argument to the end of the array. E.g., if A = [1, 2], then after
calling A.push(3), the value of A would be [1, 2, 3].

pop Removes the last element from the end of the array and returns it. E.g., if A = [1, 2], then after
calling A.pop(), 2 would be returned, and the value of A would be [1].

slice Called with no arguments, this returns a (shallow) copy of the array. Returns a copy of a portion
of the array when called with arguments selecting the start (and optionally end) index of the
portion.

sort Reorders the elements of the array into ascending order. For primitive types, this orders them
according to the built-in “<=” operator for that type. For other types, you must pass in an
argument, which is a function taking two arguments (a, b) and returning a negative value if
a ă b, a positive value if a ą b, and zero if a “ b. (For numbers, just (a, b) => a - b works!)

Methods of String

indexOf Takes a character (i.e., a length-1 string) as an argument and returns the first index where
that character appears in the string or -1 if the character is nowhere in the string.

includes Returns true if the string contains the argument (another string) somewhere within it. E.g.,
"a quick brown fox".includes("bro") returns true.

split Takes a character (i.e., a length-1 string) as an argument and returns an array containing each
of the contiguous pieces of the string without that character. For example, "the quick brown

fox".split(" ") returns ["the", "quick", "brown", "fox"].

toLowerCase Returns the same string but with all upper-case characters replaced by their lower-case
versions (all other characters are unchanged).

5

https://developer.mozilla.org/en-US/

