1. Recall the pseudocode for BFS, and consider the following graph below.
```
push start node onto a queue
mark start node as visited
while queue is not empty:
    pop node N off queue
    if N is goal:
        return true
    else:
    for each node O that is child of N:
        if O is not marked visited:
            mark node O as visited
            push O onto queue
return false
```


Find the shortest path starting from B going to \mathbf{E}. Record each update (push, pop) to the queue or any returns (true, false) in the table below.

Action	Queue Contents	Visited Nodes

