
CSE 331
Software Design & Implementation

Winter 2023
Section 4 – Graphs, Testing

UW CSE 331 Winter 2023 1

Administrivia

• Done with HW3!

• HW4 due today! 11 pm

• HW5-1 Spec out on the website now
– Always plan for work taking 3x longer than expected, so start

early!

• Any questions?

2UW CSE 331 Winter 2023

Agenda

• Rep-Exposure Exercise

• Graph concepts

• Testing in practice
– Script testing
– JUnit testing

3UW CSE 331 Winter 2023

Rep-Exposure Exercise

4

ps

e1

e2

e3

main

…
x 1
y 2

elts

UW CSE 331 Winter 2023

Rep-Exposure Exercise (Solution)

5

ps

e1

e2

e3

main

…
x 1
y 2

x 17
y 42

elts

…

UW CSE 331 Winter 2023

Graphs

6UW CSE 331 Winter 2023

A graph represents relationships

A graph is a set of nodes and a set of edges between them.

Nodes may be labeled.

Edges may be labeled.

Edges may have a direction.

7

Node 5

Node 1

Node 3
Node 4

Node 2
Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

UW CSE 331 Winter 2023

Example: road map

Nodes: intersections (cities) Edges: roads
Label: name/location Label: name/length

8UW CSE 331 Winter 2023

Example: airline flights

Nodes: airports Edges: flights
Label: airport code Label: cost/time

9UW CSE 331 Winter 2023

Nodes: Courses Edges: pointer to next class
Label: Course name Label: none

Example: CSE courses

10

CSE
142

CSE
143

CSE
311

CSE
312

CSE
331

CSE
332

CSE
421

CSE
447

CSE
446

UW CSE 331 Winter 2023

You’ve used graphs before!

11

Singly linked Lists:

Nodes: Linked list node Edges: pointer to next node
Label: integer Label: none

3 -25 0

UW CSE 331 Winter 2023

You’ve used graphs before!

12

3 -25 0

Doubly linked Lists:

Nodes: Linked list node Edges: pointers to prev/next nodes
Label: integer Label: none

UW CSE 331 Winter 2023

Binary trees:

Nodes: Tree node Edges: pointers to children
Label: Integer Label: none

You’ve used graphs before!

13

8 43

42

-3 40 98

UW CSE 331 Winter 2023

An edge points from source to dest.

Each edge “points” from a source to a destination.
• Outgoing from source
• Incoming to destination

N.B.: We’re only dealing with directed
graphs from here on out.

14

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

UW CSE 331 Winter 2023

An edge points from source to dest.

Each edge “points” from a source to a destination.
• Outgoing from source
• Incoming to destination

Edge A is Node 1 à Node 2.
• Outgoing from Node 1
• Incoming to Node 2

15

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

UW CSE 331 Winter 2023

An edge points from source to dest.

Each edge “points” from a source to a destination.
• Outgoing from source
• Incoming to destination

Edge C is Node 2 à Node 3.
• Outgoing from Node 2
• Incoming to Node 3

16

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

UW CSE 331 Winter 2023

A node has children

A node’s outgoing edges point to its children.
• Potentially empty set

17

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

UW CSE 331 Winter 2023

A node has children

A node’s outgoing edges point to its children.
• Potentially empty set

Node 3 has three children:
• Node 1
• Node 4
• Node 5

18

Node 5

Node 1

Node 3
Node 4

Node 2
Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Edge I

UW CSE 331 Winter 2023

A node has children

A node’s outgoing edges point to its children.
• Potentially empty set

Node 2 has two children:
• Node 2
• Node 3

19

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

UW CSE 331 Winter 2023

A node has parents

A node’s incoming edges point from its parents.
• Potentially empty set

20

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

UW CSE 331 Winter 2023

A node has parents

A node’s incoming edges point from its parents.
• Potentially empty set

Node 4 has two parents:
• Node 3
• Node 5

21

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

UW CSE 331 Winter 2023

A node has parents

A node’s incoming edges point from its parents.
• Potentially empty set

Node 5 has one parent:
• Node 3

UW CSE 331 Winter 2023 22

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

A node has neighbors

A node’s neighbors are its children plus its parents.
• Potentially empty set

23

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

UW CSE 331 Winter 2023

A node has neighbors

A node’s neighbors are its children plus its parents.
• Potentially empty set

Node 2 has four neighbors:
• Node 1 (parent)
• Node 2 (self-pointing)
• Node 3 (child)
• Node 4 (parent)

24

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

UW CSE 331 Winter 2023

A node has neighbors

A node’s neighbors are its children plus its parents.
• Potentially empty set

Node 3 has four neighbors:
• Node 1 (child)
• Node 2 (parent)
• Node 4 (parent and child)
• Node 5 (child)

25

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

UW CSE 331 Winter 2023

Possible graph operations

Creators
• Construct an empty graph

Observers
• Look up node(s) by label, children of, parents of, neighbors of, …
• Look up edge(s) by label, incoming to, outgoing from, …
• Iterate through all nodes
• Iterate through all edges

Mutators
• Insert/remove a node
• Insert/remove an edge

31

More observers
• Find path(s) from one node to another
• Find all reachable nodes
• Count indegree, outdegree

You might or might not want to
include all of these operations in
your graph ADT design.

UW CSE 331 Winter 2023

HW5: Design before implementation

• HW5: Building an ADT for labeled, directed graphs
– Labeled: Nodes and edges have label values (Strings)
– Directed: Edges have direction
– Edges with same source and destination will have unique labels

• The exact interface of your Graph class is up to you
– So no given JUnit tests bundled with the starter code
– Advice: Look ahead at HW6 and consider its likely needs
– Reminder: Not a generic class.

• HW5 split into 2 parts
1. Design and specify a graph ADT
2. Implement that ADT specification

32UW CSE 331 Winter 2023

HW5-1: What’s Included

• Your submission for HW5-1 should include:
– Java class(es) that represent your ADT

• Each with method stubs
– Specifications for all classes and methods
– Tests for your ADT

• JUnit and Script tests (coming soon...)

• Your submission for HW5-1 should not include:
– Any implemented methods
– Anything private (fields, methods, classes, etc.)

• Including RI and AF

UW CSE 331 Winter 2023 33

HW5: Specifications in JavaDoc

• Write class/method specifications in proper JavaDoc comments
– See “Resources” à “Class and Method Specifications”

• You can generate nice HTML pages cleanly presenting all your
JavaDoc specifications
– Placed in “build/docs/javadoc/”

• This is a great way to verify the JavaDoc is formatted correctly
– And to review/proofread your work…

• Make sure to look at your JavaDoc before submitting!

34UW CSE 331 Winter 2023

HW5: Testing

• How might you test a dishwasher?

UW CSE 331 Winter 2023 35

– Maybe we put in a dirty plate, run it, and we expect there to
be a clean plate

– Maybe we fill it with dirty silverware, run it, and the
silverware should be clean

– …

• Tests consist of some input/setup, and we compare the results
to some expected output

HW5: Testing

• Now, how can we (the course staff) test your graph ADT?
– Given that you will all have different designs with different

methods

UW CSE 331 Winter 2023 36

• To answer this, we must first answer: what does a graph need to
be able to do?
– We need the ability to add nodes and edges
– And we need to be able to see what nodes exist and the

relationships between those nodes
– Otherwise, it wouldn’t be a useful graph!

HW5: Testing

• For example: we want to test that if we get all the nodes in an
empty graph we just created, we get zero nodes.

• How do we test this on each of your graphs?
– We won’t write new JUnit tests for each one of you!

• We need to define a test input and output format that is
independent of your graph specification and implementation
– We call these script tests!

• Ex:

UW CSE 331 Winter 2023 37

CreateGraph g
ListNodes g

created graph g
g contains:

Input Output

HW5: Script Tests

Each script test is expressed as text-based script file foo.test
– Sequence of commands, one command per line, of the form:

Command arg1 arg2…
– Script’s output compared against foo.expected
– Precise details specified in the homework
– Match format exactly, including whitespace!

38

Command (in foo.test) Output (in foo.expected)
CreateGraph name created graph name

AddNode graph label added node label to graph

AddEdge graph parent child label added edge label from parent to child in graph

ListNodes graph graph contains: labelnode …

ListChildren graph parent the children of parent in graph are: child(labeledge) …

This is comment text … # This is comment text …
UW CSE 331 Winter 2023

HW5: example.test

Create a graph
CreateGraph graph1

Add a pair of nodes
AddNode graph1 n1
AddNode graph1 n2

Add an edge
AddEdge graph1 n1 n2 e1

Print all nodes in the graph
ListNodes graph1

Print all child nodes of n1 with outgoing edge
ListChildren graph1 n1

39

n1 n2
e1

UW CSE 331 Winter 2023

HW5: example.expected

Create a graph
created graph graph1

Add a pair of nodes
added node n1 to graph1
added node n2 to graph1

Add an edge
added edge e1 from n1 to n2 in graph1

Print all nodes in the graph
graph1 contains: n1 n2

Print all child nodes of n1 with outgoing edge
the children of n1 in graph1 are: n2(e1)

40

n1 n2
e1

UW CSE 331 Winter 2023

HW5: Creating a script test

41

1. Write test steps as script commands in a file foo.test

2. Write expected (“correct”) output in a file foo.expected
– …taking care to match the output format exactly

3. Place both files under src/test/resources/testScripts/

4. Run all such tests via the Gradle task scriptTests
– But only after the class is implemented and
GraphTestDriver stubs filled in (in HW5 part 2)

UW CSE 331 Winter 2023

HW5: More Script Tests

• How do these commands call methods in our graph class?
– They don’t! (for now…)
– We’ll deal with that in HW5 Part 2—don’t worry for now.

• These script tests will work regardless of your graph design or
implementation.

• Commands are not the same as the methods in your graph
– e.g. you should not have a method called AddNode() that

adds a node to the graph and prints out/returns the string
“added node n1 to graph1”

– This wouldn’t make much sense for other graph clients!

42UW CSE 331 Winter 2023

HW5: ListNodes and ListChildren

UW CSE 331 Winter 2023 43

• ListNodes and ListChildren are the only commands where
the output depends on the state of your graph
– The rest have output that repeats inputs (e.g. name of graph)

• Thus, every test should have either ListNodes or
ListChildren to validate the graph state is as you expect.

• These two commands have output in a specific format and in
sorted order
– But your graph methods should not return things in this

format or in sorted order
– Instead, your methods should return the necessary

information in unsorted collections (when implemented in
HW5 part 2)

HW5: Script tests vs. JUnit Tests

UW CSE 331 Winter 2023 44

• Script tests will not cover every case for your graph:
– What if you have additional methods that can’t be tested by

our script test commands?
– What about “bad” input for your graph?
– What happens when you try to add the same node twice?
– …

• We need some way to test cases that cannot be covered by our
script tests

• For this, we use JUnit tests.

HW5: Creating JUnit tests

45

1. Create JUnit test class in src/test/java/graph/junitTests/

2. Write a test method for each unit test

3. Run all such tests via the Gradle task junitTests

import org.junit.*;
import static org.junit.Assert.*;

/** Document class... */
public class FooTests {
/** Document method... */
@Test
public void testBar() { ... /* JUnit assertions */ }

}

UW CSE 331 Winter 2023

HW5: Creating JUnit tests

46

1. Note: Your JUnit tests will fail in hw5 part 1, because you have
not implemented the actual methods yet
– The same goes for your script tests

2. You will do that in part 2

UW CSE 331 Winter 2023

HW5: Testing Summary

• The design process includes crafting a good test suite
– Script tests and JUnit tests

• Script Tests (src/test/resources/testScripts/)
– Test script files name.test with corresponding name.expected
– Validate behavior intrinsic to high-level concept (abstract meaning)
– Tested properties should be expected of any solution to HW5

• JUnit Tests (src/test/java/graph/junitTests/)
– JUnit test classes
– Validate behavior that can't be tested with script tests.

• If you can validate a behavior using either test type, use a script
test!

47UW CSE 331 Winter 2023

JUnit for test authors

48

The following slides are included for reference and add additional
material that you’ll need to write tests for HW 5.

Reminder: In CSE 331 this quarter, we’re using Junit 4, not Junit 5.
If you’ve used Junit 5 elsewhere, some details are different

(especially tests for methods that should throw an exception)

UW CSE 331 Winter 2023

Writing tests with JUnit

49

Annotate a method with @Test to flag it as a JUnit test

import org.junit.*;
import static org.junit.Assert.*;

/** Unit tests for my Foo ADT implementation */
public class FooTests {
@Test
public void testBar() {
... /* use JUnit assertions in here */

}
}

UW CSE 331 Winter 2023

Common JUnit assertions

50

JUnit’s documentation has a full list, but these are the most
common assertions.

Assertion Failure condition
assertTrue(test) test == false

assertFalse(test) test == true

assertEquals(expected, actual) expected and actual are not equal
assertSame(expected, actual) expected != actual

assertNotSame(expected, actual) expected == actual

assertNull(value) value != null

assertNotNull(value) value == null

Any JUnit assertion can also take a string to show in case of failure, e.g.,
assertEquals("helpful message", expected, actual).

UW CSE 331 Winter 2023

Always* use >= 1 JUnit Assertion

• If you don’t use any JUnit assertions, you are only checking that
no exception/error occurs

• That’s a pretty weak notion of passing a test; rarely the best test
you could write

• Having more than one JUnit assertion in a test may make
sense, but one is the most common scenario
– “Each test should test one (new) thing” (most of the time)

* = Special-case coming in a couple slides ☺

51UW CSE 331 Winter 2023

JUnit assertions vs Java’s assert

• Use JUnit assertions only in JUnit test code
– JUnit assertions have names like assertEquals,
assertNotNull, assertTrue

– Part of JUnit framework used to report test results
• Accessed via import org.junit….

– Don’t use in ordinary Java code (never import
org.junit…. in non-JUnit code)

• Use Java’s assert statement in ordinary Java code
– Use liberally to annotate/check “must be true” / “must not

happen” / etc. conditions
– Use in checkRep() to detect failure if problem(s) found
– Do not use in JUnit tests to check test result – does not

interact properly with JUnit framework to report results

52UW CSE 331 Winter 2023

Checking for a thrown exception

53

• Need to test that your code throws exceptions as specified

• This kind of test method fails if its body does not throw an
exception of the named class
– May not need any JUnit assertions inside the test method

@Test(expected=IndexOutOfBoundsException.class)
public void testGetEmptyList() {
List<String> list = new ArrayList<String>();
list.get(0);

}

UW CSE 331 Winter 2023

Test ordering, setup, clean-up

54

JUnit does not promise to run tests in any particular order.

However, JUnit can run helper methods for common setup/cleanup
• Run before/after each test method in the class:

• Run once before/after all test methods in the class:
@BeforeClass
public static void m() { ... }
@AfterClass
public static void m() { ... }

@Before
public void m() { ... }
@After
public void m() { ... }

UW CSE 331 Winter 2023

Tips for effective testing

55

• Use constants instead of hard-coded values
– Makes change easier later on

• Take advantage of assertion messages

• Give a descriptive name to each unit test (method)
– Verbose but clear is better than short and inscrutable
– Don’t go overboard, though :-)

• Write tests with a simple structure
– Isolate bugs one at a time with successive assertions
– Helps avoid bugs in your tests too!

• Aim for thorough test coverage
– Big/small inputs, common/edge cases, exceptions, ...

UW CSE 331 Winter 2023

Test Design Worksheet

• Work in small groups

• Give logic of the tests, not actual code

• Only test the operations provided on the worksheet

• More details in lecture if additional information/review needed

56UW CSE 331 Winter 2023

