
UW CSE 331 Winter 2023

CSE 331
Software Design & Implementation

Winter 2023
Section 3 – HW4, Abstract Data Types, and JUnit

1

Administrivia

• HW3 due today (1/19) at 11PM!

• HW4 due next Thursday at 11PM
– This one takes a while, so get an early start!

2

Agenda

• Overview of HW4

• Quick review of polynomial arithmetic

• Unit testing with JUnit – an initial tour for HW4

• Review abstract data types (ADTs) by example

3

Abstract Data Types (ADTs)

• Abstraction representing some set of data
– Meant to express the meaning/concept behind some Java class

and the operations on it

• Different from implementation/instance fields!
– Same ADT can have many different implementations
– For instance, we can store the same point as an (x,y) or (r,
theta

• Both can be used to calculate the distance from origin, or
create a line, etc.

• Stay tuned for more details in lecture tomorrow…

4

HW4 – Polynomial calculator

A homework in 6 parts:
0. Pseudocode algorithms for polynomial arithmetic
1. Conceptual questions about RatNum
2. Implement RatTerm
3. Implement RatPoly
4. Implement RatPolyStack
5. Try out your finished calculator!
6. Run your code against our tests to make

sure it works!

5

The RatThings

• RatNum ADT
– A rational number
– Also includes a NaN (“not a number”) value

• RatTerm ADT
– A polynomial term (rational coefficient w/ integer degree)

• RatPoly ADT
– A polynomial expression (sum of polynomial terms)

• RatPolyStack ADT
– An ordered collection of polynomial expressions

6

The RatThings

7

1
4𝑥

! + 3𝑥 + 10

2
3
𝑥!

1
7

RatPoly

RatTerm

RatNum

The RatThings

8

1
4𝑥

! + 3𝑥 + 10

2
3
𝑥!

1
7

RatPoly

RatPoly

RatPoly

Bottom

RatPolyStack

Polynomial arithmetic

Review arithmetic operations over polynomial expressions:
1. Addition
2. Subtraction
3. Multiplication
4. Division

9

Polynomial addition

10

(5x4 + 4x3 - x2 + 5) + (3x5 - 2x3 + x – 5)

Polynomial addition

11

(5x4 + 4x3 - x2 + 5) + (3x5 - 2x3 + x – 5)

5x4 + 4x3 - 1x2 + 5

+ 3x5 - 2x3 + 1x - 5

Polynomial addition

12

(5x4 + 4x3 - x2 + 5) + (3x5 - 2x3 + x – 5)

0x5 + 5x4 + 4x3 - 1x2 + 0x + 5

+ 3x5 + 0x4 - 2x3 + 0x2 + 1x - 5

Polynomial addition

13

(5x4 + 4x3 - x2 + 5) + (3x5 - 2x3 + x – 5)

0x5 + 5x4 + 4x3 - 1x2 + 0x + 5

+ 3x5 + 0x4 - 2x3 + 0x2 + 1x - 5

3x5 + 5x4 + 2x3 - 1x2 + 1x + 0

Polynomial subtraction

14

(5x4 + 4x3 - x2 + 5) - (3x5 - 2x3 + x – 5)

Polynomial subtraction

15

(5x4 + 4x3 - x2 + 5) - (3x5 - 2x3 + x – 5)

5x4 + 4x3 - 1x2 + 5

- 3x5 - 2x3 + 1x - 5

Polynomial subtraction

16

(5x4 + 4x3 - x2 + 5) - (3x5 - 2x3 + x – 5)

0x5 + 5x4 + 4x3 - 1x2 + 0x + 5

- 3x5 + 0x4 - 2x3 + 0x2 + 1x - 5

Polynomial subtraction

17

(5x4 + 4x3 - x2 + 5) - (3x5 - 2x3 + x – 5)

0x5 + 5x4 + 4x3 - 1x2 + 0x + 5

- 3x5 + 0x4 - 2x3 + 0x2 + 1x - 5

-3x5 + 5x4 + 6x3 - 1x2 - 1x + 10

Polynomial multiplication

18

(4x3 - x2 + 5) × (x – 5)

Polynomial multiplication

19

(4x3 - x2 + 5) × (x – 5)

4x3 - 1x2 + 5

× 1x - 5

Polynomial multiplication

20

(4x3 - x2 + 5) × (x – 5)

4x3 - 1x2 + 5

× 1x - 5

-20x3 + 5x2 - 25

Polynomial multiplication

21

(4x3 - x2 + 5) × (x – 5)

4x3 - 1x2 + 5

× 1x - 5

-20x3 + 5x2 - 25

4x4 - 1x3 + 5x

Polynomial multiplication

22

(4x3 - x2 + 5) × (x – 5)

4x3 - 1x2 + 5

× 1x - 5

-20x3 + 5x2 - 25

+ 4x4 - 1x3 + 5x

4x4 -21x3 + 5x2 + 5x - 25

Polynomial division

23

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

Polynomial division

24

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

1x3 -2x -5 5x6 +4x4 -1x3 +5

Polynomial division

25

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

Polynomial division

26

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

Polynomial division

27

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

5x6 +0x5 -10x4 -25x3

Polynomial division

28

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3

Notice (quotient * divisor) + remainder is always equal to
(5x6 + 4x4 – x3 + 5).
Hint: this can help us determine the invariant

Polynomial division

29

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3

Polynomial division

30

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2

Polynomial division

31

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2

Polynomial division

32

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2 +0x

Polynomial division

33

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2 +14x

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2 +0x

Polynomial division

34

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2 +14x

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2 +0x

14x4 +0x3 -28x2 -70x

Polynomial division

35

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2 +14x

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2 +0x

- 14x4 +0x3 -28x2 -70x

0x4 +24x3 +28x2 +70x

Polynomial division

36

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2 +14x

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2 +0x

- 14x4 +0x3 -28x2 -70x

0x4 +24x3 +28x2 +70x

Polynomial division

37

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2 +14x

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2 +0x

- 14x4 +0x3 -28x2 -70x

0x4 +24x3 +28x2 +70x +5

Polynomial division

38

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2 +14x +24

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2 +0x

- 14x4 +0x3 -28x2 -70x

0x4 +24x3 +28x2 +70x +5

Polynomial division

39

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2 +14x +24

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2 +0x

- 14x4 +0x3 -28x2 -70x

0x4 +24x3 +28x2 +70x +5

24x3 +0x2 -48x -120

Polynomial division

40

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2 +14x +24

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2 +0x

- 14x4 +0x3 -28x2 -70x

0x4 +24x3 +28x2 +70x +5

- 24x3 +0x2 -48x -120

0x3 +28x2 +118x +125

Polynomial division

41

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 +0x2 +14x +24

1x3 +0x2 -2x -5 5x6 +0x5 +4x4 -1x3 +0x2 +0x +5

- 5x6 +0x5 -10x4 -25x3

0x6 +0x5 +14x4 +24x3 +0x2 +0x

- 14x4 +0x3 -28x2 -70x

0x4 +24x3 +28x2 +70x +5

- 24x3 +0x2 -48x -120

0x3 +28x2 +118x +125

quotient

remainder

Notice (quotient * divisor) +
remainder is still equal to
(5x6 + 4x4 – x3 + 5).

Polynomial division

42

(5x6 + 4x4 – x3 + 5) / (x3 - 2x – 5)

5x3 + 14x + 24 +
28x2 + 118x + 125

x3 - 2x - 5

What is a final variable in Java?

43

• Once assigned, it can never be reassigned.

• What is the difference between these two?

final int x = 42;

final List<Integer> y = new ArrayList<>();

• How does this relate to immutability?
– x cannot change, y still can! (for instance, I can still do
y.add(10))

• More precisely: y itself never changes – it always
references the same ArrayList, but the ArrayList that
it references can change, so the list is not immutable

HW4 Starter Code

44

Let’s look at the HW4 starter code, Javadoc, and tests…

Testing: A quick introduction

45

• For HW 4, you’ll be running our test suite to verify
your RatThings work.

• Just know how it works; don’t need to know how to
write tests (yet)!

JUnit

46

• Industry-standard Java toolkit for unit testing
– We’re using JUnit 4
– Some other classes use JUnit 5—please make sure to use JUnit 4

and its syntax!
• Biggest difference is testing to verify an exception is thrown

• A unit test is a test for one “component” by itself
– “Component” typically a class or a method

• Each unit test written as a method
– We’ll see the particulars in a moment…

• Closely related unit tests should be grouped into a class
– For example, all unit tests for the same ADT implementation

Tests in JUnit

47

A method annotated with @Test is flagged as a JUnit test

import org.junit.*;
import static org.junit.Assert.*;

/** Unit tests for my Foo ADT implementation */
public class FooTests {

@Test
public void testBar() {

... /* use JUnit assertions in here */
}

}

Using JUnit assertions

48

• JUnit assertions establish success or failure of the test method
– Note: JUnit assertions are different from Java’s assert statement

• Use to check that an actual result matches the expected value
– Example: assertEquals(42, meaningOfLife());
– Example: assertTrue(list.isEmpty());

• A test method stops immediately after the first assertion failure
– If no assertion fails, then the test method passes
– Other test methods still run either way

• JUnit results show details of any test failures

Common JUnit assertions

49

JUnit’s documentation has a full list, but these are the most common
assertions.

Assertion Failure condition
assertTrue(test) test == false

assertFalse(test) test == true

assertEquals(expected, actual) expected and actual are not equal
assertSame(expected, actual) expected != actual

assertNotSame(expected, actual) expected == actual

assertNull(value) value != null

assertNotNull(value) value == null

Any JUnit assertion can also take a string to show in case of failure, e.g.,
assertEquals(“helpful message”, expected, actual).

Checking for a thrown exception

52

• Should test that your code throws exceptions as specified

• This kind of test method fails if its body does not throw an
exception of the named class
– May not need any JUnit assertions inside the test method unlike our

previous guideline

@Test(expected=IndexOutOfBoundsException.class)
public void testGetEmptyList() {

List<String> list = new ArrayList<String>();
list.get(0);

}

Note: This is different in JUnit 5, so make sure to use this syntax!

Test ordering, setup, clean-up

53

JUnit does not promise to run tests in any particular order.

However, JUnit can run helper methods for common setup/cleanup
• Run before/after each test method in the class:

• Run once before/after running all test methods in the class:

@BeforeClass
public static void m() { ... }
@AfterClass
public static void m() { ... }

@Before
public void m() { ... }
@After
public void m() { ... }

Junit Tests Example

54

Let’s look at some example Junit tests…

Abstract data types by example

56

Review ADT concepts through two examples:
• A Line ADT
• A Circle ADT

On the course website, see “Resources” à “Class and Method
Specifications” for a handy guide with full details.

We won’t cover abstraction functions today (see upcoming lecture).

Line ADT

57

Concept: A line segment in the Cartesian co-ordinate plane

x
y

Line ADT: Class specification

59

/**
* A Line is a mutable 2D line segment with endpoints
* p1 and p2.
*/

public class Line {
... // rep invariant, fields, methods, etc.

}

x
y

Circle ADT

60

Concept: A circle in the Cartesian co-ordinate plane

y
x

Circle ADT: Class specification

63

y
x

/**
* A Circle is a mutable 2D circle, defined by a
* center point p and radius r.
*/

public class Circle {
... // fields, rep invariant, methods, etc.

}

Circle ADT: Representation #1

64

/**
* A Circle is a mutable 2D circle, defined
* by a center point p and radius r.
*/

public class Circle {
private Point center;
private double radius;

...
}

Interlude: Representation invariant

65

An ADT implementation has a representation invariant:
– Restricts concrete representation of the ADT
– Maps each object’s internal state to a boolean for validity

If the representation invariant is violated by (i.e., false for) some
object, that object is “broken.”

– The object doesn’t map to any abstract value
– Indicates a bug in the ADT implementation!

Circle ADT: Representation #1

66

/**
* A Circle is a mutable 2D circle, defined
* by a center point p and radius r.
*/

public class Circle {
private Point center;
private double radius;

// Representation Invariant:
// center != null && radius > 0
...

}

Circle ADT: Representation #2

67

/**
* A Circle is a mutable 2D circle,
* defined by a center point p and
* radius r.
*/

public class Circle {
private Point center;
private Point edge;

// Representation Invariant:
// center != null &&
// edge != null &&
// !center.equals(edge)

}

corner

Circle ADT: Representation #3

68

/**
* A Circle is a mutable 2D circle,
* defined by a center point p and
* radius r.
*/

public class Circle {
private Point corner;
private double length;

// Representation Invariant:
// corner != null &&
// length > 0

}

length

Checking the representation invariant

70

The rep. invariant must hold before and after each public method.

Write and use a checkRep() method:
• Call at entry and exit of each public method

– Only call at the exit of constructors
• Bug-finding value well worth the little extra code
• If slow to check, add code to conditionally do expensive checks when

desired and omit when appropriate (more later with hw5, hw6, etc.)
• Much more about this in lectures

public void m(...) {
checkRep();
...
checkRep();

}

checkRep()

71

Do we still need to call our checkRep in every method if our object
is immutable?

public class A {
final int x;
// only constructor

}

Yes! The fields of an immutable ADT can still change (even by
accident!), and we need to ensure our rep invariant holds.

With one exception…if every field is strictly immutable and final,
then we only need to call it at the end of constructor because
immutability is guaranteed

public class B {
final List<Integer> x;
// everywhere

}

Try it yourself!

Write your own specification of a Rectangle ADT
on the handout.

Then give two different possible representations
for your Rectangle ADT and write checkRep
functions for them

72

