
CSE 331: Software Design & Implementation
Section 3 – ADTs – Sample Solution (1)

Write two different representations for the Rectangle ADT in the starter code below, including
valid checkReps for each representation. Hint: use assert <condition>; to check for
valid representations in checkRep() methods and terminate if the <condition> is false

There are many ways valid to represent a rectangle. We will provide 2 samples, with 2
implementations each.

Note: We’ve included abstraction functions and representation invariants for each of these for
reference even though it wasn’t asked for.

Write your class specification below
/**
 * A Rectangle represents an immutable 2D rectangle with
 * the top-left corner p, width w, and height h.
 * We can denote a Rectangle as a triple (p, w, h).
 * All rectangles are rotated the same way. That is, the top
 * edge of the Rectangle is parallel to the x-axis.
 */
public class Rectangle {

 // Abstraction Function:
 // AF(this) = a rectangle with
 // top-left corner at (this.x, this.y) and
 // a width of this.width and
 // a height of this.height

 // Rep Invariant:
 // width > 0 and
 // height > 0

 private final double x;
 private final double y;
 private final double width;
 private final double height;

 private void checkRep() {
 assert width > 0;
 assert height > 0;
 }
}

/**
 * Uses the same class specification as above
 */
public class Rectangle {
 Your fields for your representation, abstraction function, and rep invariant go below

 // Abstraction Function:
 // AF(this) = a rectangle with top-left corner
 // at (this.x1, this.y1) and
 // width of this.x2 – this.x1 and
 // height of this.y1 – this.y2

 // Rep Invariant:
 // x1 < x2 and
 // y1 > y2

 private final double x1;
 private final double y1;
 private final double x2;
 private final double y2;

 private void checkRep() {
 assert x1 < x2;
 assert y1 > y2;
 }
}

CSE 331: Software Design & Implementation

Section 3 – ADTs – Sample Solution (2)

Write two different representations for the Rectangle ADT in the starter code below, including
abstraction functions and a rep invariant for each representation.

Here is another valid way to represent a rectangle. There are many more valid ways to do this,
but we’ve provided this other sample for you:

Write your class specification below
/**
 * A Rectangle represents a mutable 2D rectangle with
 * 4 corners. We can denote a Rectangle as an ordered
 * list of points [p1, p2, p3, p4], where each point is
 * a corner of the rectangle. The first point is the bottom-
 * left corner, and the rest are assigned going clockwise.
 */
public class Rectangle {
 Your fields for your representation, abstraction function, and rep invariant go below

 // Abstraction Function:
 // AF(this) = a rectangle with
 // p1 at (this.x1, this.y1)
 // p2 at (this.x2, this.y2)
 // p3 at (this.x3, this.y3)
 // p4 at (this.x4, this.y4)

 // Rep Invariant:
 // sqrt((x1 – x3)^2 + (y1 – y3)^2) ==
 // sqrt((x2 – x4)^2 + (y2 – y4)^2)

 private double x1, y1;
 private double x2, y2;
 private double x3, y3;
 private double x4, y4;

 private void checkRep() {
 assert Math.sqrt((Math.pow(x1 – x3, 2)
 + Math.pow(y1 – y3, 2))
 == Math.sqrt((Math.pow(x2 – x4, 2)
 + Math.pow(y2 – y4, 2));
 }

}

/**
 * Uses the same class specification as above
 */
public class Rectangle {
 Your fields for your representation, abstraction function, and rep invariant go below

 // Abstraction Function:
 // AF(this) = a rectangle with
 // p1 at (this.p.x, this.p.y)
 // p2 at (this.p.x, this.p.y + this.height)
 // p3 at (this.p.x + this.width, this.p.y + this.height)
 // p4 at (this.p.x + this.width, this.p.y)

 // Rep Invariant:
 // p != null and
 // height > 0 and
 // width > 0

 private Point p;
 private double height;
 private double width;

 private void checkRep() {
 assert p != null;
 assert height > 0;
 assert width > 0;
 }

}

