
CSE 331
Software Design & Implementation

Hal Perkins
Based on slides by Soham Pardeshi, Andrew Gies

Winter 2023
HW9, Spark Java, Fetch

UW CSE 331 Winter 2023 1

Administrivia

• HW8 due this week (Thur. 3/2 @ 11:00pm)

• Section this week: more about today’s demo, react, and spark, and
hw9 – do not miss!

• HW9 due a week later (Thur. 3/9 @11:00pm)
– Spec released later today
– Combination of ideas and code from HW7 + HW8
– Get creative! Lots of cool opportunities to go above and beyond!

• Any questions?

UW CSE 331 Winter 2023 2

Agenda

• HW9 Overview
• Anonymous Inner Classes

– Common Java idiom – can make code easier to write
– Come in handy when writing the Java server

• JSON
– Brief overview
– Helps share data between Java and JS

• Spark Java
– How to turn your hw-pathfinder code into a Java web server

• Fetch
– How your JS sends requests to the Java server

UW CSE 331 Winter 2023 3

Homework 9 Overview

• Creating a new web GUI using React
– Display a map and draw paths between two points on the map
– Similar to your React app in HW8 – but you may add more!
– New: Send requests to your (new) Java server to request

building and path info

• Creating a Java server as part of your previous HW5-7 code
– Receives requests from the React app to calculate paths and

send data
– Not much code to write here thanks to MVC

• Reuse your CampusMap class from HW7

UW CSE 331 Winter 2023 4

The Map Lines Stack

UW CSE 331 Winter 2023 5

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Your React Application

http://localhost:3000

Your TypeScript Code

<Map>

<button>

Other Components

”Can I have the webpage?”

“Here’s some HTML and
JS”

MapLines

The Campus Paths Stack

UW CSE 331 Winter 2023 6

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Spark Java Server*
“localhost:4567”

Started with runSpark gradle task

Your React Application

http://localhost:3000

SparkServer

CampusMap

Other pathfinder Code

Your TypeScript Code

<Map>

<button>

Other Components

”Can I have the webpage?”

“Here’s some HTML and
JS”

“How do I go from CSE to
CSE2?”

“Here’s some JSON with
your data.”

CampusPaths

*Note: This is not Apache Spark

Any Questions?

UW CSE 331 Winter 2023 7

• Done:
– HW9 Basic Overview

• Up Next:
– Anonymous Inner Classes
– JSON
– Spark Java
– Fetch

Anonymous Inner Classes

• Helps put code closer to where it’s used
• Makes sense when you aren’t re-using classes

• The Example: sorting Strings by length instead of alphabetically
– We need to make a Comparator – but how best to organize

our code?
– Start with what we’re used to, then refine

UW CSE 331 Winter 2023 8

Anonymous Inner Classes (Attempt 1)

UW CSE 331 Winter 2023 9

public class StringSorter {

public static void main(String[] args) {
String[] strings = new String[]{"CSE331", "UW", "React", "Java"};
Arrays.sort(strings, new LengthComparator())
System.out.println(Arrays.toString(strings));

}
}

public class LengthComparator implements Comparator<String> {

@Override
public int compare(String s1, String s2) {

return Integer.compare(s1.length(), s2.length());
}

}

StringSorter.java

LengthComparator.java

Attempt 1 – Pros/Cons

UW CSE 331 Winter 2023 10

• Pros:
– Easy to reuse (assuming we want to)

• Cons:
– Polluting the namespace with a whole extra top-level class
– Understanding the main method requires viewing two

separate Java files

UW CSE 331 Winter 2023 11

public class InnerStringSorter {

public static void main(String[] args) {
String[] strings = new String[]{"CSE331", "UW", "React", "Java"};
Arrays.sort(strings, new InnerLengthComparator());
System.out.println(Arrays.toString(strings));

}

public static class InnerLengthComparator implements Comparator<String> {

@Override
public int compare(String s1, String s2) {

return Integer.compare(s1.length(), s2.length());
}

}
}

Anonymous Inner Classes (Attempt 2)

InnerStringSorter.java

Attempt 2 – Pros/Cons

UW CSE 331 Winter 2023 12

• Pros:
– In a single Java file now – easier to read/understand
– Still reusable outside this file, but more annoying syntax:

• new InnerStringSorter.InnerLengthComparator()
• new Path<E>.Segment()

• Cons:
– If we’re not reusing it, this is unnecessary indirection

• Reader has to find and read a new class to understand
what the code in main means, even if we only ever do this
sorting in one place

UW CSE 331 Winter 2023 13

public class AnonymousStringSorter {

public static void main(String[] args) {
String[] strings = new String[]{"CSE331", "UW", "React", "Java"};
Arrays.sort(strings, new Comparator<String>() {

@Override
public int compare(String s1, String s2) {

return Integer.compare(s1.length(), s2.length());
}

});
System.out.println(Arrays.toString(strings));

}
}

Anonymous Inner Classes (Attempt 3)

AnonymousStringSorter.java

UW CSE 331 Winter 2023 14

public class AnonymousStringSorter {

public static void main(String[] args) {
String[] strings = new String[]{"CSE331", "UW", "React", "Java"};
Arrays.sort(strings, new Comparator<String>() {

@Override
public int compare(String s1, String s2) {

return Integer.compare(s1.length(), s2.length());
}

});
System.out.println(Arrays.toString(strings));

}
}

Anonymous Inner Classes (Attempt 3)

Creating
and using
the class,
all at once!
No need to
give it a
name.

AnonymousStringSorter.java

Attempt 3 – Pros/Cons

UW CSE 331 Winter 2023 15

• Pros:
– Still in a single Java file
– Puts the meaning of the code right where it’s being executed -

easy to see exactly what the Arrays.sort is going to do
– Very useful if you need to make many different Comparators (or

objects that extend other classes)
• Like in HW9 J

• Cons:
– Not reusable (there’s no name!)

• Anonymous inner classes only make sense in certain
circumstances, like when you need to make an object for one
specific situation

– Can be harder to read if overused

• Note: Java 8 adds a whole bunch of additional ways to write these sorts of things
– Not going to discuss them, but you’re welcome to learn and use them if you’d like!

Any Questions?

UW CSE 331 Winter 2023 16

• Done:
– HW9 Basic Overview
– Anonymous Inner Classes

• Up Next:
– JSON
– Spark Java
– Fetch

JSON

UW CSE 331 Winter 2023 17

• We have a whole application written in Java so far:
– Reads CSV data, manages a Graph data structure with

campus data, uses Dijkstra’s algorithm to find paths
• We’re writing a whole application in JavaScript:

– React web app to create an interactive GUI for your users

• Even if we get them to communicate (discussed later), we need
to make sure they “speak the same language”
– JavaScript and Java store data very differently

• JSON = JavaScript Object Notation
– Can convert JS Object → String, and String → JS Object
– Bonus: Strings are easy to send inside server

requests/responses

JSON ↔ Java

UW CSE 331 Winter 2023 18

public class SchoolInfo {

String name = "U of Washington";
String location = "Seattle";
int founded = 1861;
String mascot = "Dubs II";
boolean isRainy = true;
String website = "www.uw.edu";
String[] colors = new String[]

{"Purple", "Gold"};

}

Java Object JSON String

• Use Gson (a library from Google) to
convert between them

– Tricky (but possible) to go from JSON String
to Java Object, but we don’t need that for
this assignment

Gson gson = new Gson();
SchoolInfo sInfo = new SchoolInfo()
String json = gson.toJson(sInfo);

{"name":"U of Washington",
"location":"Seattle","founded":1861,
"mascot":"Dubs II","isRainy":true,
"website":"www.uw.edu",
"colors":["Purple","Gold"]}

UW CSE 331 Winter 2023 19

let schoolInfo = {

name: "U of Washington",
location: "Seattle",
founded: 1861,
mascot: "Dubs II",
isRainy: true,
website: "www.uw.edu",
colors: ["Purple","Gold"]

}

{"name":"U of Washington",
"location":"Seattle","founded":1861,
"mascot":"Dubs II","isRainy":true,
"website":"www.uw.edu",
"colors":["Purple","Gold"]}

Javascript Object JSON String

• Can convert between the two easily (we’ll see how later)
• This means: if the server sent back a JSON String, it’d be easy to use

the data inside of it – just turn it into a JS Object and read the fields out
of the object

JSON ↔ JS

JSON – Key Ideas

UW CSE 331 Winter 2023 20

• Use Gson to turn Java objects containing the data into JSON
before we send it back to the requesting app
– The Java objects don’t have to be simple, like in the

example. Gson can handle complicated structures.
• Easy to turn a JSON string into a Javascript object so we can

use the data (fetch can help us with that)

Any Questions?

UW CSE 331 Winter 2023 21

• Done:
– HW9 Basic Overview
– Anonymous Inner Classes
– JSON

• Up Next:
– Spark Java
– Fetch

The Campus Paths Stack

UW CSE 331 Winter 2023 22

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Spark Java Server*
“localhost:4567”

Started with runSpark gradle task

Your React Application

http://localhost:3000

SparkServer

CampusMap

Other pathfinder Code

Your TypeScript Code

<Map>

<button>

Other Components

”Can I have the webpage?”

“Here’s some HTML and
JS”

“How do I go from CSE to
CSE2?”

“Here’s some JSON with
your data.”

CampusPaths

*Note: This is not Apache Spark

Spark Java

UW CSE 331 Winter 2023 23

• Using the Spark Java framework – designed to make this short &
easy

– Note: there’s also something called Apache Spark. Completely different, careful what
you Google

• Create the server by creating “routes” in the main method of your
server program
– A route is an instruction that tells the server what to do when

it gets a particular request
– Create Route objects and override their abstract handle()

method
• Remember anonymous inner classes? J

– Users can request information. The handle method gets
information about these requests, can set information about the
response, then return something that will be sent back to the user.

What is a Request

UW CSE 331 Winter 2023 24

• Basically just a URL:
– When you type a URL into your browser, it makes a GET

request to that URL, the response to that request is sent by
the website itself (i.e., the HTML, JS, etc.)

• A ”GET” request says “Hey server, can I get some info
about _____?”

– We’re going to make a request from inside Javascript / React
to ask our campus map (hw7) spark server for data about
paths on campus

– There are other kinds of requests, but we’re just using GET.
(It’s the default for fetch)

• Each “place” that a request can be sent is called an “endpoint”
– Your Java server will provide multiple endpoints – one for

each kind of request that your React app might want to make.
• Find a path, get building info, etc...

Forming a Request

UW CSE 331 Winter 2023 25

• Basic request with no extra data: “http://localhost:4567/getSomeData”
– A request to the “/getSomeData” endpoint in the server at “localhost:4567”
– “localhost” just means “on this same computer”
– “:4567” specifies a port number – every computer has multiple ports so

multiple things can be running at a given time.
• (“4567” is the port we’re using in this example – no further significance beyond that)

• Sending extra information in a request is done with a query string:
– Add a “?”, then a list of “key=value” pairs. Each pair is separated by “&“.
– Query string might look like: “?start=CSE&end=KNE”

• Complete request looks like:
http://localhost:4567/findPath?start=CSE&end=KNE

– Sends a “/findPath” request to the server at “localhost:4567”, and
includes two pieces of extra information, named “start” and “end”

• You don’t need to name your endpoints or query string parameters
anything specific, the above is just an example

• Note: we are using basic, unencrypted http requests, not secure https that is standard on
production websites these days. http is fine for what we need and https is complex to set up.

Server Address: http://localhost:4567

Forming a Request

UW CSE 331 Winter 2023 26

Server Address: http://localhost:4567

http://localhost:4567/getSomeData

http://localhost:4567/findPath?start=CSE&end=KNE

http://washington.edu/about.....

Hostname Port* Endpoint

Query Params*

*Port and query params are technically optional

Our First Spark Route

UW CSE 331 Winter 2023 27

public static void main(String[] args) {
Spark.get("/hello-world", new Route() {

@Override
public Object handle(Request request, Response response) throws Exception {

return "Hello, Spark!";
}

});
}

• Creating a new anonymous subclass of Route
– Probably not going to have a whole bunch of different endpoints that all send back

“Hello, Spark!” – so this makes sense

• Telling Spark to use that Route whenever it receives a GET request
(Spark.get) to the “/hello-world” endpoint
– Responds to the request: “http://localhost:4567/hello-world”

Demo Time!

UW CSE 331 Winter 2023 28

• See that simple Spark route in action
• See a Spark route that can get info from a query parameter and

use it
• See the node-fetch code that sends a request to the Spark

endpoint that we just went over and displays it on the page

• There are more demos than we will go over in section – get the
code from the website to see everything
– LOTS of useful info in there

Any Questions?

UW CSE 331 Winter 2023 29

• Done:
– HW9 Basic Overview
– Anonymous Inner Classes
– JSON
– Spark Java

• Up Next:
– Fetch

Fetch

UW CSE 331 Winter 2023 30

• Used by JS to send requests to servers to ask for info

• Uses Promises:
– Promises capture the idea of “it’ll be finished later”
– We can "pause" the currently executing function while we wait

for the promise to complete
– Asking a server for a response can be slow, so Promises

allow the browser to keep working instead of stopping to wait
– Getting the data out is a little more complicated

• We’re using async/await syntax to deal with promises

Sending a Request

UW CSE 331 Winter 2023 31

let responsePromise = fetch(“http://localhost:4567/findPath?start=CSE&end=KNE”);

• The URL you pass to fetch() can include a query string if you need
to send extra data

• responsePromise is a Promise object
– Once the Promise “resolves,” it’ll hold whatever is sent back

from the server
• How do we get the data out of the Promise?

– We can await the promise’s resolution
– await tells the browser that it can pause the currently-executing

function and go do other things. Once the promise resolves, it’ll
resume where we left off.

– Prevents the browser from freezing while the request is
happening

Getting Useful Data

UW CSE 331 Winter 2023 32

async sendRequest() {
let responsePromise = fetch(“...”);
let response = await responsePromise;
let parsingPromise = response.json();
let parsedObject = await parsingPromise;
this.setState({

importantData: parsedObject
});

}

“This function is
pause-able”

Will eventually
resolve to an
actual JS object
based on the
JSON string

Once we have
the data, store it
in a useful place

Error Checking

UW CSE 331 Winter 2023 33

async sendRequest() {
try {

let response = await fetch(“...”);
if (!response.ok) {

alert(“Error!”);
return;

}
let parsed = await response.json();
this.setState({

importantData: parsed
});

} catch (e) {
alert(“Error!”);

}
}

Every response has
a ‘status code’ (e.g.
404 = Not Found)
This checks for 200
= OK

On a complete
failure (i.e. server
isn’t running) an
error is thrown

Things to Know
• Can only use the await keyword inside a function declared with

the async keyword
– async keyword means that a function can be “paused” while

await-ing
• async functions automatically return a Promise that will

eventually contain their return value
– This means that if you need a return value from the function

you declared as async, you’ll need to await the function call
– But that means that the caller also needs to be async
– Therefore: generally best to not have useful return values

from async functions (for 331 that is; there are lots of use
cases outside of this course, but can get complicated fast)

– Instead of returning, consider calling setState to store the
result and trigger an update (like in the example)

UW CSE 331 Winter 2023 34

• Error checking is important
– If you forget, the error most likely will disappear without

actually causing your program to explode
• This is BAD! Silent errors can cause tricky bugs

– This happens because errors don’t bubble outside of
promises, and the async function you’re inside is effectively
“inside” a promise

– Means that if you don’t catch an exception, it’ll just disappear
as soon as your function ends

UW CSE 331 Winter 2023 35

More Things to Know

• The return value of await response.json() will be any
– As we know, this is dangerous! (No TypeScript checks)

• To solve, we create an interface describing what the server will
respond with (e.g. a Path) and cast the value to that type:

interface Path { … }

const parsed: Path = await response.json() as Path;

• Note: This does not check that the value actually has this type
– If the server sends back something different, could crash later
– A true solution would check the object before casting

• Can get pretty complicated – not required for hw9
• If you're curious – libraries like io-ts can help with this

UW CSE 331 Winter 2023 36

More More Things to Know

Any Questions?

UW CSE 331 Winter 2023 37

• Done:
– HW9 Basic Overview
– Anonymous Inner Classes
– JSON
– Spark Java

Wrap-Up

38

• Don’t forget:
– HW8 due tomorrow (Thur. 3/2 @ 11:00pm)
– HW9 due a week later (Thur. 3/9 @ 11:00pm)
– Sections tomorrow – much more about today’s topics/demos

• Use your resources!
– Office Hours
– Links from HW specs
– React Tips & Tricks Handout (See “Resources” page on web;

look for interesting sections; probably not worth reading all)
– Other students (remember academic honesty policies: can’t

share/show/copy code, but discussion is great!)
– Google (carefully, always fully understand code you use)

UW CSE 331 Winter 2023

