
CSE 331
Software Design & Implementation

Hal Perkins
based on slides and code by:

Bryan Lim, Ardi Madadi, Kevin Zatloukal, and Andrew Gies
Winter 2023

Modern Web UIs

The Road So Far…
Done:
• First, look at basic HTML on its own

– No scripting, no dynamic content
– Just how content/structure is communicated to the browser

• Second, look at basic TypeScript (& JavaScript) on its own
– No browser, no HTML, just the language
– Get a feel for what's different from Java

• Third, a quick look at very basic user interactions
– Events, event listeners, and callbacks (more depth later)

Now:
• Fourth, use TypeScript with React with HTML

– Write TypeScript code, using the React library
– Generates the page content using HTML-like syntax

UW CSE 331 Winter 2023 2

Reminder / Disclaimer

• Our goal is to learn (just) enough to produce a GUI
(Graphical User Interface) for the map from hw7
– Which means we’ll have a more superficial

understanding of what’s going on here than we
have for other things we’ve done this quarter

• We’re using React, but current “best practices” in that
world changes rapidly

• We’ll get the basic story of the React architecture
right, but we might not be using the latest-n-greatest
thing that you’ll see on the job at your next internship
(i.e., functional components vs react classes)
– But that should be fine because you’ll know the

underlying principles
CSE 331 Winter 2023 3

Reminder: Our Stack

UW CSE 331 Winter 2023 4

HTML

JavaScript

(we write these)

(sent to browser to execute)

TypeScript

React
HTML Template

Compiled/Combined by the
Development Tooling

Making the Jump to React

• Write mostly TS, which is responsible for dynamically
generating the HTML on-the-fly.
• Fundamentally different way of thinking about websites.
• Allows code reuse (more or less impossible in HTML)
• Improves modularity.
• Designed to reduce coupling, increase cohesion. (Yay!)

• The webpage is made up of React Components
• Component = a class that extends the Component class
• Components contain each other & form a tree structure

• Just like HTML tags

UW CSE 331 Winter 2023 5

The Contract

• React is "in charge" of the creation of the webpage.
– It calls methods in your components to do that
– You override those methods to control the behavior

• React can understand the data used to display the
website
– When data changes, it updates the page

• You can create multiple components
– Can reuse a single component multiple times
– Each component is a single "part" of the webpage

UW CSE 331 Winter 2023 6

How to run these demos (reference)

1) Download and install current Node LTS version from
https://nodejs.org/en/ if you haven’t done that yet
– Windows users: be sure to select “Add to PATH” if it’s

not automatically selected
2) Download demo folder from the course lecture calendar

(and expand the zip file if you get that)
3) Open the demo folder in IntelliJ
4) Open the IntelliJ terminal window (tab at bottom)
5) For each demo you want to run (hello-world, etc.)

1) cd into that directory
2) Run npm install --noaudit

• Only need to do this once
3) Run npm start each time you want to run the demo

CSE 331 Winter 2023 7

https://nodejs.org/en/

Example 1

• The simplest source code to create a React website is these 3 files:
– index.html

• A very small amount of "necessary" HTML
• Most of the actual web content will be generated by the

TS/React code
– index.tsx

• Starting point of code – runs when the page loads
• Starts React

– App.tsx

• Our first component – the App component

• When we build the React app, all these files will be incorporated into
what is sent to the browser

UW CSE 331 Winter 2023 8

React

• Regain modularity by allowing custom tags

let app = (

<div>
<TitleBar name="Demo App"/>

<EditPane rows="80" />
</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions

CSE 331 Winter 2023 9

React

• Custom tags implemented using classes (like TS)

class TitleBar extends React.Component {

• Attributes (name="Demo App") passed in props arg

• Method render produces the HTML for component
– Returned code is rendered literally in the web page

unless it’s surrounded by { } in which case it’s
evaluated by React to get content to add to the page

• React framework joins all the HTML into one blob
– can update in a single call to innerHTML = …

CSE 331 Winter 2023 10

Example 2

register-react/…

CSE 331 Winter 2023 11

Structure of a React Application

12CSE 331 Winter 2023

Model

Listeners

HTML

data and invariants

presentation

eventsupdates

React State

• Components become dynamic by maintaining state
– stored in fields of this.state for each component
– call this.setState({field: value}) to update

• But: a component can only update its own state. To
update state in other components, a component
must call a function belonging to that other
component (details later)

• And: this is the only correct way to update state.
Cannot assign directly (won’t render properly)

• React will respond by calling render again
– will automatically update the HTML to match the HTML

produced by this call

CSE 331 Winter 2023 13

Callbacks in JS

UW CSE 331 Winter 2023 14

<html lang="en">

<head>

<title>HTML Button</title>

</head>

<body>
<script type="text/javascript">

function sayHello() {

alert("Hello, CSE 331!");

}

</script>

<button onclick="sayHello()">Click Me!</button>

</body>
</html>

1 – JS sayHello function embedded
in web page inside <script> tag

0 – web page is loaded
into browser

2 – Button created on page load;
sayHello() function registered to be

called on click event

3 – when button is clicked
function sayHello() is called
and alert box is displayed

Callbacks in JS

• This is the callback pattern
• The webpage is loaded into the web browser, and it

contains a JavaScript function and a button
• When the button is created, the JS function to be

called on a button click is registered with the button
– The function is not called at this time

• When the user clicks the button, it causes a user-
interface event to happen
– In response, the button calls the function that was

registered to be executed on a click event
• This is a callback

UW CSE 331 Winter 2023 15

Callbacks in React
– React terminology uses the term passing in

(instead of registering) a callback function when
we supply such a function as a prop to a child
component.

– We can propagate information upwards from child
component.

• We can pass down a callback
function from a parent
component as a prop.

• When called, the callback
function can then update the
fields (state) of the parent
component from the child component.

UW CSE 331 Winter 2023 16
Source: www.dotnettricks.com

Example 3

register-react2/…

CSE 331 Winter 2023 17

Event Listeners

Three ways to do this properly:

1. onClick={this.handleClick.bind(this)}

2. onClick={(e) => this.handleClick(e)}

3. Make handleClick a prop rather than a method:

handleClick: (e) => { … };

Then this.handleClick is okay. (The homework
assignment does this instead.)

CSE 331 Winter 2023 18

Structure of Example React App

19

Quarter
PickerApp

Class
Picker

State:
– quarter

onPick

Props:
– quarter

State:
– classes

quarter

onBack

React State

• Custom tag also has its own events

• Updating data in a parent:
– sends parent component new data via a callback

to a function provided by the parent to the current
component in current component’s props (events)

– parent updates state with setState
– React calls parent’s render to get new HTML

• result can include new children
• result can include changes to child props

– Resulting in calls to child’s render

CSE 331 Winter 2023 20

Splitting the Model

• State should exist in the lowest common parent
(ancestor) of all the components that need it
– sent down to children via props

• Children change it via events
– sent up to the parent so it can change its state

• Parent’s render creates new children with new props

CSE 331 Winter 2023 21

Structure of a React Application

22CSE 331 Winter 2023

Model

Listeners

HTML

data and invariants

presentation

eventsupdates

Structure of a React Application

• Model must store all data necessary to generate the
exact UI on the screen
– react may call render at any time
– must produce identical UI

• Any state in the HTML components must be mirrored
in the model
– e.g., every text field’s value must be part of some

React component’s state
– render produces

<input type="text" value={…}>

CSE 331 Winter 2023 23

React setState

• setState does not update state instantly:

// this.state.x is 2

this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates
CSE 331 Winter 2023 24

React Gotchas

• render should not have side-effects
– only read this.state in render

• Never modify this.state
– use this.setState instead

• Never modify this.props
– read-only information about parent’s state

• Not following these rules may introduce bugs that will
be hard to catch!

CSE 331 Winter 2023 25

React Performance

• React re-computes the tree of HTML on state change
– can compute a “diff” vs last version to get changes

• Surprisingly, this is not slow!
– slow part is calls into browser methods
– pure-JS parts are very fast in modern browsers
– processing HTML strings is also incredibly fast

CSE 331 Winter 2023 26

React Tools

• Use of compilers etc. means new tool set

• npm does much of the work for us
– installs third-party libraries
– runs the compiler(s)

• Much more in sections tomorrow…

CSE 331 Winter 2023 27

