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Administrivia

• HW7 out yesterday – campus map pathfinder
– Due next Thursday night
– Lots of relevant things in sections yesterday

• Holiday Monday.  We should have some office hours –
watch calendar for updates.

• TypeScript tutorial video available on 331 course canvas 
panopto page & lecture calendar now
– Followup to this lecture
– Must watch this before next Wednesday’s class (or 

else that will be really confusing/mysterious)
– Sample code for this lecture and the TypeScript video 

linked to the course calendar for this lecture
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The Weeks Ahead

• We’re going to build an application that can find 
walking paths on the campus (hw7)

• We’d like to add a graphical user interface front-end 
once that’s done
– The web is a common way to build/distribute apps
– Web programming uses the same concepts we're 

learning
– So: We're going to make a webapp for this.
– Therefore: Let us learn how to do this!
– Note: There are many ways to approach web 

programming. We're doing just one…

UW CSE 331 Winter 2023 3



Our Approach

• We're going to be using several different pieces:
– HTML

• The language that web browsers render
• Describes the structure and content of the page

– TypeScript (TS)
• A version of JavaScript that adds type-safety
• Used to create the bulk of our application
• Adds interactivity to the webpage

– React
• A UI library – handles the interactions between 

TS and HTML, makes UI programming easier
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Our Approach (2)

• We’re going to learn just enough to display a map, allow 
users to select endpoints, and draw a path
– So we we’ll focus on the basics, particularly key 

differences between what we're doing and Java
– But also realize our goal isn’t to exhaustively cover 

everything – don’t have time, so core ideas only
– And it probably won’t be the “very latest” way of doing 

things – but the core concepts should be right
• Will probably be outside your comfort zone – this is new 

stuff!
– Remember to ask questions J

• Last two assignments this quarter: 
– HW8 draw lines on a map image (using TS/React)
– HW9: use HW8 framework to build campus path GUI, 

use the Java graph/pathfinding code from hw5-hw7
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Credits

• CSE 331 JS/TS project originally due to Andrew Gies and 
Avi Bhagat, new version this quarter done by Bryan Lim 
and Ardi Madadi (& a host of others testing, etc.)

• Slides due to Andrew Gies, Hal Perkins & Kevin Zatloukal
• Thanks to Lauren Bricker and CSE 154 crew for some 

additional notes (but even if you took 154 recently this 
stuff probably will look different)

• And from wherever we can find useful things…

• Notes: JS = JavaScript.  ECMAScript is the official 
standard version so you’ll also see things like ES or ES6 
or ES2015, etc.  TS=TypeScript=JS with type declaration
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A little history

In the beginning was the web page
• It was displayed in a browser
• It had links
• But it was static
• There was no way to update or 

compute content dynamically or 
interact with users

• Solution: add a scripting 
language to the browser
– Users (page developers) 

should be able to write code
– Code should be able to 

interact with the browser’s 
data structures to read / 
update / modify the page 
contents

World Wide Web
The WorldWideWeb (W3) is a wide-area hypermedia
information retrieval initiative aiming to give universal 
access to a large universe of documents.
Everything there is online about W3 is linked directly or 
indirectly to this document, including an executive 
summary of the project, Mailing lists , Policy , November's 
W3 news , Frequently Asked Questions . 
What's out there? Pointers to the world's online 
information, subjects , W3 servers, etc. 
Help on the browser you are using 
Software Products A list of W3 project components and 
their current state. (e.g. Line Mode ,X11 Viola , NeXTStep
, Servers , Tools , Mail robot , Library ) 
Technical Details of protocols, formats, program internals 
etc
Bibliography Paper documentation on W3 and references. 
People A list of some people involved in the project. 
History A summary of the history of the project. 
How can I help ? If you would like to support the web.. 
Getting code Getting the code by anonymous FTP , etc. 
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http://info.cern.ch/hypertext/WWW/WhatIs.html
http://info.cern.ch/hypertext/WWW/Summary.html
http://info.cern.ch/hypertext/WWW/Administration/Mailing/Overview.html
http://info.cern.ch/hypertext/WWW/Policy.html
http://info.cern.ch/hypertext/WWW/News/9211.html
http://info.cern.ch/hypertext/WWW/FAQ/List.html
http://info.cern.ch/hypertext/DataSources/Top.html
http://info.cern.ch/hypertext/DataSources/bySubject/Overview.html
http://info.cern.ch/hypertext/DataSources/WWW/Servers.html
http://info.cern.ch/hypertext/WWW/Help.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/LineMode/Browser.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/NeXT/WorldWideWeb.html
http://info.cern.ch/hypertext/WWW/Daemon/Overview.html
http://info.cern.ch/hypertext/WWW/Tools/Overview.html
http://info.cern.ch/hypertext/WWW/MailRobot/Overview.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/Technical.html
http://info.cern.ch/hypertext/WWW/Bibliography.html
http://info.cern.ch/hypertext/WWW/People.html
http://info.cern.ch/hypertext/WWW/History.html
http://info.cern.ch/hypertext/WWW/Helping.html
http://info.cern.ch/hypertext/README.html
http://info.cern.ch/hypertext/WWW/LineMode/Defaults/Distribution.html


Enter JavaScript

• Created in 1995 by Brenden Eich as a “scripting 
language” for Mozilla’s browser
– Done in 10 days! 

• Used to make web pages interactive:
– Change the content/structure in HTML
– React to events (page load, user clicks)
– Discover info about local computer
– Do local calculations

• No relation to Java other than trying to piggyback on 
all the Java hype at that time
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Why JavaScript now?

• JavaScript is a web standard & ships in every browser
– But not supported identically by all of them L

• De facto execution engine for dynamic code on web
– If a website is doing something interesting, there's probably 

JavaScript underneath

• We will try to stick to portable, generic stuff
– We use tooling that "smooths out" the difference between 

browsers as much as possible (it's the wild west out there)
– But for hw8/hw9 we’re only supporting Chrome (at least this 

time around) to avoid cross-platform grief
• Install and update to current version please
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In Context…
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HTML

JavaScript Interactivity/Animation/Changes

Modifies

Document Structure & Content

The "Original" Model of (Dynamic) Web 
Development

(small amount)

(lots of this)



So that's what we're doing, right?

• Not quite…
• The original model was meant for simple things

– click a button to submit a form, change a color, etc..
• The modern web now hosts full-fledged applications

entirely using web technology
– JS + HTML were never designed for this

• The "old" way:
– Language + tooling doesn't help much, difficult to 

write big programs correctly/safely/efficiently
– Managing large parts of the webpage with pure JS is 

difficult to get right
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One* Modern Alternative
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HTML

JavaScript

Modifies + Creates Content

(lots of this)

(very little)

* There are a lot of ways to do 
things in modern web dev

Compiled Into

TypeScript

React

• TS = JS with extra features
• Type System (!)
• The compiler is smart – helps 

you find bugs, just like Java
• React = UI Library

• Main idea: users create the 
content with JS/TS

• Uses data to create the web 
content – change the data to 
change the content

• Browsers don't speak TS
• Need to convert to JS before 

running
• We don't need to read/write (we 

write TS), but you should know that 
this is what's happening



Resources
• Lectures will (try to) point out key things

• TypeScript is mostly JavaScript – only big difference is types
– Wondering how to do something? Look for JavaScript answers
– Wondering how to use types for something? Look for TypeScript answers

• For more…
– Mozilla (MDN) tutorials are good
– CodeAcademy JavaScript basics
– React documentation – small doses, way more info than we need
– TypeScript documentation – focused on the "new stuff" in TS vs JS

• Be very careful about web searches
– There are 1000 ways to do anything, many of which may be different 

than what we're doing
– Code snippets from the web may lead you way off.
– When in doubt, make an Ed post!
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Our plan…

• First, look at basic HTML on its own
– No scripting, no dynamic content
– Just how content/structure is communicated to the  browser

• Second, look at basic TypeScript (& JavaScript) on its own
– No browser, no HTML, just the language
– Get a feel for what's different from Java

• Third, a quick look at very basic user interactions
– Events, event listeners, and callbacks (just basic ideas now)

• Fourth, use TypeScript with React with HTML
– Write TypeScript code, using the React library
– Generates the page content using HTML-like syntax
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HTML, Formally

• HTML - HyperText Markup Language

• Consists of tags and their contents
– Each tag has a different meaning

– button, paragraph, link, etc…
– Each one has a beginning and end.
– Can contain text (content) and other tags. Optional attributes 

(organized as key-value pairs)
• Can think of them like “constructor parameters”: pieces 

of data that specify extra info about the tag.

• Define document structure and content

• Browser reads HTML (plain ascii text) and follows instructions in 
tags to render the formatted page
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Demo
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<html lang="en">
<head>

<title>331 Example Webpage</title>
</head>
<body>

<h1>The Allen School</h1>
<div>

<p>
The Allen School is a Computer Science school at
UW. The best course in <br/> the Allen School is
<a href="https://cs.uw.edu/331">CSE 331</a>.

</p>
<button>Click Me!</button>

</div>
</body>

</html>



Anatomy of a Tag

<p> Some Text </p>
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Tag Name Content

Closing Tag

Element



Anatomy of a Tag

<p id=”firstParagraph”> Some Text </p>
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<br />

Tag Name

Attribute Name

Attribute Value Content

Closing Tag

Self-Closing Tag (No Content)

We’ll see what <p> and <br> mean soon...

Element



Tags form a Tree
<div>

<p id=”firstParagraph”> Some Text </p>
<br />
<div>

<p>Hello</p>
</div>

</div>
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div

p br div

p

This tree data structure, 
which lives in the 
browser, is often called 
the "DOM" – Document 
Object Model



A Few Useful Tags

• A few worth mentioning here:
• <html> and <head> and <body> - Used to organize a 

basic HTML document.
• <title> - Sets the title of the webpage
• <p> - Paragraph tag, surrounds text with whitespace/line 

breaks.
• <a> - Link tag – links to another webpage.
• <div> - “The curly braces of HTML” - used for grouping 

other tags. Surrounds its content with whitespace/line 
breaks.

• <span> - Like <div>, but no whitespace/line breaks.
• <br /> - Forces a new line (like “\n”). Has no content.
• <button> - Create a clickable button on the screen

• See the W3Schools HTML reference for a complete list, 
along with all their supported attributes
• But don’t need to learn all (or most) of them
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Demo Again
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<html lang="en">
<head>

<title>331 Example Webpage</title>
</head>
<body>

<h1>The Allen School</h1>
<div>

<p>
The Allen School is a Computer Science school at
UW. The best course in <br/> the Allen School is
<a href="https://cs.uw.edu/331">CSE 331</a>.

</p>
<button>Click Me!</button>

</div>
</body>

</html>



What’s next?
Done:
• First, look at basic HTML on its own

– No scripting, no dynamic content
– Just how content/structure is communicated to the  browser

Now:
• Second, look at basic TypeScript (& JavaScript) on its own

– No browser, no HTML, just the language
– Get a feel for what's different from Java

• Third, a quick look at very basic user interactions
– Events, event listeners, and callbacks (more depth later)

• Fourth, use TypeScript with React with HTML
– Write TypeScript code, using the React library
– Generates the page content using HTML-like syntax
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JavaScript (1)
Like Java in many ways:
• Variables:

– let allows rebinding
– const is like Java's final – can't change after creation

• Types of values: 
– number – floating point only, no integer type
– boolean – true/false
– string – similar to Java's strings
– undefined – "unset" values
– object (includes null) – more info later
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let something = "hello, world";
const pi = 3.1415;



JavaScript (2)
• if/else if/else statements

– Structurally identical to Java
– Any value can be used as a boolean:

• false, 0, "", null, undefined, NaN behave as false
• Everything else (!) behaves as true
• Values are described as "falsey" and "truthy"

• Loops 
– for, while – same as Java
– for-in and for-of are like Java's for-each

• Be careful with for-in and for-of, they're tricky

• Arrays 
– Can mix types in the array – [123, "hello", false]
– No bounds checks, possible to access after the end
– Versatile: can use as stacks/queues/lists
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JavaScript (3)
• Functions

– Can exist outside of 
classes/objects

– Functions are values
• Put them in variables
• Pass them to functions
• (more in demo)

• Objects
– Similar to a Java HashMap

• key/value pairs
– The values can be functions

• This is how we get 
methods!

– Written using { and } 
• Recent JS/ECMAScript 

adds “class” syntax so it 
looks more familiar
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let add = function(x, y) {
return x + y;

}

let mul = function(x, y) {
return x * y;

}

add(2, 3);  // result is 5
add = mul;
add(2, 3);  // result is 6

let simpleObj = {
x: 8,
y: "abc",
z: true

};
simpleObj.x; // result is 8



Why TypeScript?

• JS variables are dynamically typed
– The type of a variable can change based on its value
– JS will attempt to convert values where it can
– This leads to tricky bugs

• TS = Mostly JS, but adds static types (like Java)
– Can declare type when creating a variable
– TypeScript compiler will enforce this – prevents bugs!
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let x: number = 5;
x = "35";   // TypeScript error!

let x = 5;  // x holds a number
x = "35";   // x now holds a string
x += 7;     // x = "357"



More TypeScript

• Longer online video tutorial
– Please watch before next Wednesday (otherwise 

that class won’t make much sense)

• Some basic sample files in the typescript/ folder 
accompanying these slides (see calendar for link)
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What’s next?
Done:
• First, look at basic HTML on its own

– No scripting, no dynamic content
– Just how content/structure is communicated to the  browser

• Second, look at basic TypeScript (& JavaScript) on its own
– No browser, no HTML, just the language
– Get a feel for what's different from Java

Now:
• Third, a quick look at very basic user interactions

– Events, event listeners, and callbacks (more depth later)

• Fourth, use TypeScript with React with HTML
– Write TypeScript code, using the React library
– Generates the page content using HTML-like syntax
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Demo Revisited

• Our first webpage 
was static
– It even included a 

picture of a button,
but nothing happened 
when it was clicked

• How do we add 
interaction?
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Demo
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<html lang="en">
<head>

<title>331 Example Webpage</title>
</head>
<body>

<h1>The Allen School</h1>
<div>

<p>
The Allen School is a Computer Science school at
UW. The best course in <br/> the Allen School is
<a href="https://cs.uw.edu/331">CSE 331</a>.

</p>
<button>Click Me!</button>

</div>
</body>

</html>



Demo 2
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<html lang="en">

<head>

<title>HTML Button</title>

</head>

<body>
<script type="text/javascript">

function sayHello() {

alert("Hello, CSE 331!");

}

</script>

<button onclick="sayHello()">Click Me!</button>

</body>
</html>



What happened here?

• This is the callback pattern
• The webpage is loaded into the web browser and it 

contains a JavaScript function and a button
• When the button is created, the JS function to be 

called on a button click is registered with the button
– The function is not called at this time

• When the user clicks the button, it causes a user-
interface event to happen
– In response, the button calls the function that was 

registered to be called (notified) whenever there is 
a click event

• This is a callback
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Demo 2 revisited
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<html lang="en">

<head>

<title>HTML Button</title>

</head>

<body>
<script type="text/javascript">

function sayHello() {

alert("Hello, CSE 331!");

}

</script>

<button onclick="sayHello()">Click Me!</button>

</body>
</html>

1 – JS sayHello function embedded 
in web page inside <script> tag

0 – web page is loaded
into browser

2 – Button created on page load;  
sayHello() function registered to be 

called on click event

3 – when button is clicked 
function sayHello() is called 
and alert box is displayed



Demo 2 Perspective

• This demo gives a very simple example using plain 
JavaScript – details will be different in React, but the 
core callback idea is the same
– On startup, register code to be activated when 

events happen
• Multiple ways to do this: options in an html tag 

(basic JS), call a “register” function and pass to 
it the function to call when the event happens 
(react), similar things in other async systems

– When an event happens (button press, text added 
to dialog, timer expires, data read, etc. etc.) the 
code that is registered ahead of time will be called
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Up Next

• Watch the TS Demo video before Wednesday
– On Canvas under "Panopto Recordings” & linked to 

lecture calendar for today
– Details on how the language works
– Sample code for the video is linked to this lecture in 

the code/typescript/ folder

• Wednesday class: Using React + TS to create websites

• Sections next week: HW8, TS + React
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