
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2023

HTML + TypeScript Overview

UW CSE 331 Winter 2023 1

Administrivia

• HW7 out yesterday – campus map pathfinder
– Due next Thursday night
– Lots of relevant things in sections yesterday

• Holiday Monday. We should have some office hours –
watch calendar for updates.

• TypeScript tutorial video available on 331 course canvas
panopto page & lecture calendar now
– Followup to this lecture
– Must watch this before next Wednesday’s class (or

else that will be really confusing/mysterious)
– Sample code for this lecture and the TypeScript video

linked to the course calendar for this lecture

UW CSE 331 Winter 2023 2

The Weeks Ahead

• We’re going to build an application that can find
walking paths on the campus (hw7)

• We’d like to add a graphical user interface front-end
once that’s done
– The web is a common way to build/distribute apps
– Web programming uses the same concepts we're

learning
– So: We're going to make a webapp for this.
– Therefore: Let us learn how to do this!
– Note: There are many ways to approach web

programming. We're doing just one…

UW CSE 331 Winter 2023 3

Our Approach

• We're going to be using several different pieces:
– HTML

• The language that web browsers render
• Describes the structure and content of the page

– TypeScript (TS)
• A version of JavaScript that adds type-safety
• Used to create the bulk of our application
• Adds interactivity to the webpage

– React
• A UI library – handles the interactions between

TS and HTML, makes UI programming easier
UW CSE 331 Winter 2023 4

Our Approach (2)

• We’re going to learn just enough to display a map, allow
users to select endpoints, and draw a path
– So we we’ll focus on the basics, particularly key

differences between what we're doing and Java
– But also realize our goal isn’t to exhaustively cover

everything – don’t have time, so core ideas only
– And it probably won’t be the “very latest” way of doing

things – but the core concepts should be right
• Will probably be outside your comfort zone – this is new

stuff!
– Remember to ask questions J

• Last two assignments this quarter:
– HW8 draw lines on a map image (using TS/React)
– HW9: use HW8 framework to build campus path GUI,

use the Java graph/pathfinding code from hw5-hw7

UW CSE 331 Winter 2023 5

Credits

• CSE 331 JS/TS project originally due to Andrew Gies and
Avi Bhagat, new version this quarter done by Bryan Lim
and Ardi Madadi (& a host of others testing, etc.)

• Slides due to Andrew Gies, Hal Perkins & Kevin Zatloukal
• Thanks to Lauren Bricker and CSE 154 crew for some

additional notes (but even if you took 154 recently this
stuff probably will look different)

• And from wherever we can find useful things…

• Notes: JS = JavaScript. ECMAScript is the official
standard version so you’ll also see things like ES or ES6
or ES2015, etc. TS=TypeScript=JS with type declaration

UW CSE 331 Winter 2023 6

A little history

In the beginning was the web page
• It was displayed in a browser
• It had links
• But it was static
• There was no way to update or

compute content dynamically or
interact with users

• Solution: add a scripting
language to the browser
– Users (page developers)

should be able to write code
– Code should be able to

interact with the browser’s
data structures to read /
update / modify the page
contents

World Wide Web
The WorldWideWeb (W3) is a wide-area hypermedia
information retrieval initiative aiming to give universal
access to a large universe of documents.
Everything there is online about W3 is linked directly or
indirectly to this document, including an executive
summary of the project, Mailing lists , Policy , November's
W3 news , Frequently Asked Questions .
What's out there? Pointers to the world's online
information, subjects , W3 servers, etc.
Help on the browser you are using
Software Products A list of W3 project components and
their current state. (e.g. Line Mode ,X11 Viola , NeXTStep
, Servers , Tools , Mail robot , Library)
Technical Details of protocols, formats, program internals
etc
Bibliography Paper documentation on W3 and references.
People A list of some people involved in the project.
History A summary of the history of the project.
How can I help ? If you would like to support the web..
Getting code Getting the code by anonymous FTP , etc.

UW CSE 331 Winter 2023 7

http://info.cern.ch/hypertext/WWW/WhatIs.html
http://info.cern.ch/hypertext/WWW/Summary.html
http://info.cern.ch/hypertext/WWW/Administration/Mailing/Overview.html
http://info.cern.ch/hypertext/WWW/Policy.html
http://info.cern.ch/hypertext/WWW/News/9211.html
http://info.cern.ch/hypertext/WWW/FAQ/List.html
http://info.cern.ch/hypertext/DataSources/Top.html
http://info.cern.ch/hypertext/DataSources/bySubject/Overview.html
http://info.cern.ch/hypertext/DataSources/WWW/Servers.html
http://info.cern.ch/hypertext/WWW/Help.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/LineMode/Browser.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/NeXT/WorldWideWeb.html
http://info.cern.ch/hypertext/WWW/Daemon/Overview.html
http://info.cern.ch/hypertext/WWW/Tools/Overview.html
http://info.cern.ch/hypertext/WWW/MailRobot/Overview.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/Technical.html
http://info.cern.ch/hypertext/WWW/Bibliography.html
http://info.cern.ch/hypertext/WWW/People.html
http://info.cern.ch/hypertext/WWW/History.html
http://info.cern.ch/hypertext/WWW/Helping.html
http://info.cern.ch/hypertext/README.html
http://info.cern.ch/hypertext/WWW/LineMode/Defaults/Distribution.html

Enter JavaScript

• Created in 1995 by Brenden Eich as a “scripting
language” for Mozilla’s browser
– Done in 10 days!

• Used to make web pages interactive:
– Change the content/structure in HTML
– React to events (page load, user clicks)
– Discover info about local computer
– Do local calculations

• No relation to Java other than trying to piggyback on
all the Java hype at that time

UW CSE 331 Winter 2023 8

Why JavaScript now?

• JavaScript is a web standard & ships in every browser
– But not supported identically by all of them L

• De facto execution engine for dynamic code on web
– If a website is doing something interesting, there's probably

JavaScript underneath

• We will try to stick to portable, generic stuff
– We use tooling that "smooths out" the difference between

browsers as much as possible (it's the wild west out there)
– But for hw8/hw9 we’re only supporting Chrome (at least this

time around) to avoid cross-platform grief
• Install and update to current version please

UW CSE 331 Winter 2023 9

In Context…

UW CSE 331 Winter 2023 10

HTML

JavaScript Interactivity/Animation/Changes

Modifies

Document Structure & Content

The "Original" Model of (Dynamic) Web
Development

(small amount)

(lots of this)

So that's what we're doing, right?

• Not quite…
• The original model was meant for simple things

– click a button to submit a form, change a color, etc..
• The modern web now hosts full-fledged applications

entirely using web technology
– JS + HTML were never designed for this

• The "old" way:
– Language + tooling doesn't help much, difficult to

write big programs correctly/safely/efficiently
– Managing large parts of the webpage with pure JS is

difficult to get right
UW CSE 331 Winter 2023 11

One* Modern Alternative

UW CSE 331 Winter 2023 12

HTML

JavaScript

Modifies + Creates Content

(lots of this)

(very little)

* There are a lot of ways to do
things in modern web dev

Compiled Into

TypeScript

React

• TS = JS with extra features
• Type System (!)
• The compiler is smart – helps

you find bugs, just like Java
• React = UI Library

• Main idea: users create the
content with JS/TS

• Uses data to create the web
content – change the data to
change the content

• Browsers don't speak TS
• Need to convert to JS before

running
• We don't need to read/write (we

write TS), but you should know that
this is what's happening

Resources
• Lectures will (try to) point out key things

• TypeScript is mostly JavaScript – only big difference is types
– Wondering how to do something? Look for JavaScript answers
– Wondering how to use types for something? Look for TypeScript answers

• For more…
– Mozilla (MDN) tutorials are good
– CodeAcademy JavaScript basics
– React documentation – small doses, way more info than we need
– TypeScript documentation – focused on the "new stuff" in TS vs JS

• Be very careful about web searches
– There are 1000 ways to do anything, many of which may be different

than what we're doing
– Code snippets from the web may lead you way off.
– When in doubt, make an Ed post!

UW CSE 331 Winter 2023 13

Our plan…

• First, look at basic HTML on its own
– No scripting, no dynamic content
– Just how content/structure is communicated to the browser

• Second, look at basic TypeScript (& JavaScript) on its own
– No browser, no HTML, just the language
– Get a feel for what's different from Java

• Third, a quick look at very basic user interactions
– Events, event listeners, and callbacks (just basic ideas now)

• Fourth, use TypeScript with React with HTML
– Write TypeScript code, using the React library
– Generates the page content using HTML-like syntax

UW CSE 331 Winter 2023 14

HTML, Formally

• HTML - HyperText Markup Language

• Consists of tags and their contents
– Each tag has a different meaning

– button, paragraph, link, etc…
– Each one has a beginning and end.
– Can contain text (content) and other tags. Optional attributes

(organized as key-value pairs)
• Can think of them like “constructor parameters”: pieces

of data that specify extra info about the tag.

• Define document structure and content

• Browser reads HTML (plain ascii text) and follows instructions in
tags to render the formatted page

UW CSE 331 Winter 2023 15

Demo

UW CSE 331 Winter 2023 16

<html lang="en">
<head>

<title>331 Example Webpage</title>
</head>
<body>

<h1>The Allen School</h1>
<div>

<p>
The Allen School is a Computer Science school at
UW. The best course in
 the Allen School is
CSE 331.

</p>
<button>Click Me!</button>

</div>
</body>

</html>

Anatomy of a Tag

<p> Some Text </p>

CSE 331 Fall 2020 17

Tag Name Content

Closing Tag

Element

Anatomy of a Tag

<p id=”firstParagraph”> Some Text </p>

UW CSE 331 Winter 2023 18

Tag Name

Attribute Name

Attribute Value Content

Closing Tag

Self-Closing Tag (No Content)

We’ll see what <p> and
 mean soon...

Element

Tags form a Tree
<div>

<p id=”firstParagraph”> Some Text </p>

<div>

<p>Hello</p>
</div>

</div>

UW CSE 331 Winter 2023 19

div

p br div

p

This tree data structure,
which lives in the
browser, is often called
the "DOM" – Document
Object Model

A Few Useful Tags

• A few worth mentioning here:
• <html> and <head> and <body> - Used to organize a

basic HTML document.
• <title> - Sets the title of the webpage
• <p> - Paragraph tag, surrounds text with whitespace/line

breaks.
• <a> - Link tag – links to another webpage.
• <div> - “The curly braces of HTML” - used for grouping

other tags. Surrounds its content with whitespace/line
breaks.

• - Like <div>, but no whitespace/line breaks.
•
 - Forces a new line (like “\n”). Has no content.
• <button> - Create a clickable button on the screen

• See the W3Schools HTML reference for a complete list,
along with all their supported attributes
• But don’t need to learn all (or most) of them

UW CSE 331 Winter 2023 20

Demo Again

UW CSE 331 Winter 2023 21

<html lang="en">
<head>

<title>331 Example Webpage</title>
</head>
<body>

<h1>The Allen School</h1>
<div>

<p>
The Allen School is a Computer Science school at
UW. The best course in
 the Allen School is
CSE 331.

</p>
<button>Click Me!</button>

</div>
</body>

</html>

What’s next?
Done:
• First, look at basic HTML on its own

– No scripting, no dynamic content
– Just how content/structure is communicated to the browser

Now:
• Second, look at basic TypeScript (& JavaScript) on its own

– No browser, no HTML, just the language
– Get a feel for what's different from Java

• Third, a quick look at very basic user interactions
– Events, event listeners, and callbacks (more depth later)

• Fourth, use TypeScript with React with HTML
– Write TypeScript code, using the React library
– Generates the page content using HTML-like syntax

UW CSE 331 Winter 2023 22

JavaScript (1)
Like Java in many ways:
• Variables:

– let allows rebinding
– const is like Java's final – can't change after creation

• Types of values:
– number – floating point only, no integer type
– boolean – true/false
– string – similar to Java's strings
– undefined – "unset" values
– object (includes null) – more info later

UW CSE 331 Winter 2023 23

let something = "hello, world";
const pi = 3.1415;

JavaScript (2)
• if/else if/else statements

– Structurally identical to Java
– Any value can be used as a boolean:

• false, 0, "", null, undefined, NaN behave as false
• Everything else (!) behaves as true
• Values are described as "falsey" and "truthy"

• Loops
– for, while – same as Java
– for-in and for-of are like Java's for-each

• Be careful with for-in and for-of, they're tricky

• Arrays
– Can mix types in the array – [123, "hello", false]
– No bounds checks, possible to access after the end
– Versatile: can use as stacks/queues/lists

UW CSE 331 Winter 2023 24

JavaScript (3)
• Functions

– Can exist outside of
classes/objects

– Functions are values
• Put them in variables
• Pass them to functions
• (more in demo)

• Objects
– Similar to a Java HashMap

• key/value pairs
– The values can be functions

• This is how we get
methods!

– Written using { and }
• Recent JS/ECMAScript

adds “class” syntax so it
looks more familiar

UW CSE 331 Winter 2023 25

let add = function(x, y) {
return x + y;

}

let mul = function(x, y) {
return x * y;

}

add(2, 3); // result is 5
add = mul;
add(2, 3); // result is 6

let simpleObj = {
x: 8,
y: "abc",
z: true

};
simpleObj.x; // result is 8

Why TypeScript?

• JS variables are dynamically typed
– The type of a variable can change based on its value
– JS will attempt to convert values where it can
– This leads to tricky bugs

• TS = Mostly JS, but adds static types (like Java)
– Can declare type when creating a variable
– TypeScript compiler will enforce this – prevents bugs!

UW CSE 331 Winter 2023 26

let x: number = 5;
x = "35"; // TypeScript error!

let x = 5; // x holds a number
x = "35"; // x now holds a string
x += 7; // x = "357"

More TypeScript

• Longer online video tutorial
– Please watch before next Wednesday (otherwise

that class won’t make much sense)

• Some basic sample files in the typescript/ folder
accompanying these slides (see calendar for link)

UW CSE 331 Winter 2023 27

What’s next?
Done:
• First, look at basic HTML on its own

– No scripting, no dynamic content
– Just how content/structure is communicated to the browser

• Second, look at basic TypeScript (& JavaScript) on its own
– No browser, no HTML, just the language
– Get a feel for what's different from Java

Now:
• Third, a quick look at very basic user interactions

– Events, event listeners, and callbacks (more depth later)

• Fourth, use TypeScript with React with HTML
– Write TypeScript code, using the React library
– Generates the page content using HTML-like syntax

UW CSE 331 Winter 2023 28

Demo Revisited

• Our first webpage
was static
– It even included a

picture of a button,
but nothing happened
when it was clicked

• How do we add
interaction?

UW CSE 331 Winter 2023 29

Demo

UW CSE 331 Winter 2022 29

<html lang="en">
<head>

<title>331 Example Webpage</title>
</head>
<body>

<h1>The Allen School</h1>
<div>

<p>
The Allen School is a Computer Science school at
UW. The best course in
 the Allen School is
CSE 331.

</p>
<button>Click Me!</button>

</div>
</body>

</html>

Demo 2

UW CSE 331 Winter 2023 30

<html lang="en">

<head>

<title>HTML Button</title>

</head>

<body>
<script type="text/javascript">

function sayHello() {

alert("Hello, CSE 331!");

}

</script>

<button onclick="sayHello()">Click Me!</button>

</body>
</html>

What happened here?

• This is the callback pattern
• The webpage is loaded into the web browser and it

contains a JavaScript function and a button
• When the button is created, the JS function to be

called on a button click is registered with the button
– The function is not called at this time

• When the user clicks the button, it causes a user-
interface event to happen
– In response, the button calls the function that was

registered to be called (notified) whenever there is
a click event

• This is a callback
UW CSE 331 Winter 2023 31

Demo 2 revisited

UW CSE 331 Winter 2023 32

<html lang="en">

<head>

<title>HTML Button</title>

</head>

<body>
<script type="text/javascript">

function sayHello() {

alert("Hello, CSE 331!");

}

</script>

<button onclick="sayHello()">Click Me!</button>

</body>
</html>

1 – JS sayHello function embedded
in web page inside <script> tag

0 – web page is loaded
into browser

2 – Button created on page load;
sayHello() function registered to be

called on click event

3 – when button is clicked
function sayHello() is called
and alert box is displayed

Demo 2 Perspective

• This demo gives a very simple example using plain
JavaScript – details will be different in React, but the
core callback idea is the same
– On startup, register code to be activated when

events happen
• Multiple ways to do this: options in an html tag

(basic JS), call a “register” function and pass to
it the function to call when the event happens
(react), similar things in other async systems

– When an event happens (button press, text added
to dialog, timer expires, data read, etc. etc.) the
code that is registered ahead of time will be called

UW CSE 331 Winter 2023 33

Up Next

• Watch the TS Demo video before Wednesday
– On Canvas under "Panopto Recordings” & linked to

lecture calendar for today
– Details on how the language works
– Sample code for the video is linked to this lecture in

the code/typescript/ folder

• Wednesday class: Using React + TS to create websites

• Sections next week: HW8, TS + React

UW CSE 331 Winter 2023 34

