
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2023

Data Abstraction: Abstract Data Types (ADTs)

UW CSE 331 Winter 2023 1

Administrivia

• HW3 due tomorrow night. When???
11 PM pacific time!

– Please double check hw3-final tag is correct and
be sure there are no gitlab runner bugs, etc.

• Sections tomorrow: HW4 – implement rational
numbers, polynomials, and related ADTs given a
detailed specification, test with supplied JUnit4 tests,
and more…
– Assignment posted later today
– Starter code for hw4 will be pushed to repos later

today or tonight

UW CSE 331 Winter 2023 2

Administrivia (2)

• Reminder: course web: we have writeups describing
CSE 331 concepts and conventions for specifications, rep
invariants, abstraction functions, and other topics.
– (these include the “readings” for this part of the course)

• Request: please try to use descriptive titles on ed board
questions so others can find relevant postings
– e.g., last couple of days we had several postings titled

“hw2 question 2” but they were different topics. Better
would be “hw2 #2 do we need {inv} in the loop?”, etc.

• Request: please try to make ed questions public when you
can, maybe by editing a bit. We had a lot of overlapping
private questions that could have helped others on hw2.

UW CSE 331 Winter 2023 3

Outline

This lecture:
1. What is an Abstract Data Type (ADT)?
2. How to specify an ADT?

• Immutable
• Mutable

3. Design methodology for ADTs

Very related next lectures:
• Representation invariants
• Abstraction functions
Two distinct, complementary ideas for reasoning about ADT
implementations

4UW CSE 331 Winter 2023

Procedural and data abstractions

Procedural abstraction:
– Abstract from details of procedures (e.g., methods)
– A specification mechanism
– Satisfy the specification with an implementation

Data abstraction:
– Abstract from details of data representation
– Also a specification mechanism

• And a way of thinking about programs and design
– Standard terminology: Abstract Data Type, or ADT

5UW CSE 331 Winter 2023

Outline of next 3 lectures

UW CSE 331 Winter 2023 6

Abstract
data type

Implementation
(e.g., Java class)

Abstraction
barrier

ADT
specification

ADT
implementation

Today
Abstraction function (AF):
Relationship between ADT

specification and
implementation

Representation invariant (RI):
Relationship among

implementation fields

Why we need Data Abstractions (ADTs)

Organizing and manipulating data is pervasive
– Inventing and describing algorithms is less common

Start your design by designing data abstractions
– How will relevant data be organized
– What operations will be permitted on the data by clients
– Secondary: how is data stored/represented? What

algorithms manipulate the data?

Potential problems with choosing a data abstraction:
– Decisions about data structures often made too early
– Duplication of effort in creating derived data
– Very hard to change key data structures (modularity!)

7UW CSE 331 Winter 2023

An ADT is a set of operations

• ADT abstracts from the organization to meaning of data
• ADT abstracts from structure to use
• A type is a set of operations

create,getBase,getAltitude,getBottomAngle,…

• Operations are the only way clients can access data
• Representation should not matter to the client

– So hide it from the client

class RightTriangle {
private float base;
private float altitude;

}

class RightTriangle {
private float base;
private float hypot;
private float angle;

}

8UW CSE 331 Winter 2023

UW CSE 331 Winter 2023 9

An abstract data type defines a class
of abstract objects which is completely
characterized by the operations
available on those objects …

When a programmer makes use of an
abstract data object, he [sic] is
concerned only with the behavior
which that object exhibits but not with
any details of how that behavior is
achieved by means of an
implementation…

-- Programming with Abstract Data
Types, Barbara Liskov and Stephen
Zilles 1974 (!)

UW CSE 331 Winter 2023 10

Bad programmers worry about
the code. Good programmers
worry about data structures and
their relationships.

-- Linus Torvalds

Show me your flowcharts and
conceal your tables, and I shall
continue to be mystified. Show
me your tables, and I won’t
usually need your flowcharts;
they’ll be obvious.

-- Fred Brooks

Are these classes the same?

class Point { class Point {
public float x; public float r;
public float y; public float theta;

} }

Different: cannot replace one with the other in a program

Same: both classes implement the concept “2-d point”

Goal of ADT methodology is to express the sameness:
– Clients depend only on the concept “2-d point”

11UW CSE 331 Winter 2023

Benefits of ADTs

If clients “respect” or “are forced to respect” data abstractions…
– For example, “it’s a 2-D point with these operations…”

• Can delay decisions on how ADT is implemented
• Can fix bugs by changing how ADT is implemented
• Can change algorithms

– For performance
– In general or in specialized situations

• …

We talk about an “abstraction barrier”
– A good thing to have and not cross (also known as violate)

UW CSE 331 Winter 2023 12

Concept of 2-d point, as an ADT
class Point {

// A 2-d point exists in the plane, ...
public float x();
public float y();
public float r();
public float theta();

// ... can be created, ...
public Point(); // new point at (0,0)
public Point centroid(Set<Point> points);

// ... can be moved, ...
public void translate(float delta_x,

float delta_y);
public void scaleAndRotate(float delta_r,

float delta_theta);
}

13

Observers

Creators/
Producers

Mutators

UW CSE 331 Winter 2023

rest of
program

abstraction
barrier

Abstract data type = objects + operations

• Implementation is hidden

• The only operations on objects of the type are those provided by
the abstraction

clients implementation

14UW CSE 331 Winter 2023

Point
x
y
r
theta
translate
scale_rot

Specifying a data abstraction

• An abstract state
– Not the (concrete) representation in terms of fields, objects, …

• Although some of the concrete state might coincide
(implement directly) parts of the abstract state

– “Does not exist” but used to specify the operations

• A collection of operations (procedural abstractions)
– Not a collection of procedure implementations
– Specified in terms of abstract state
– No other way to interact with the data abstraction
– Four types of operations: creators, observers, producers,

mutators

15UW CSE 331 Winter 2023

Specifying an ADT

Mutable

1. overview
2. abstract state (fields)
3. creators
4. observers
5. producers (rare)
6. mutators

Immutable

1. overview
2. abstract state (fields)
3. creators
4. observers
5. producers
6. mutators

• Creators: return new ADT values (e.g., Java constructors)
• Producers: ADT operations that return new ADT values
• Mutators: Modify a value of an ADT
• Observers: Return information about an ADT

UW CSE 331 Winter 2023 16

Implementing an ADT

To implement a data abstraction (e.g., with a Java class):
– See next two lectures
– This lecture is just about specifying an ADT
– Nothing about the concrete representation appears in the

specification

17UW CSE 331 Winter 2023

Poly, an immutable datatype: overview
/**
* A Poly is an immutable polynomial with
* integer coefficients. A typical Poly is
* c0 + c1x + c2x2 + ...

**/
class Poly {

Overview:
– Always state whether mutable or immutable
– Define an abstract model for use in operation specifications

• Difficult and vital!
• Appeal to math if appropriate
• Give an example (reuse it in operation definitions)

– State in specifications is abstract, not concrete
18

Abstract state (specification fields)

UW CSE 331 Winter 2023

Poly: creators

// effects: makes a new Poly = 0
public Poly()

// effects: makes a new Poly = cxn

// throws: NegExponent if n < 0
public Poly(int c, int n)

Creators
– New object, not part of pre-state: in effects, not modifies
– Overloading: distinguish procedures of same name by

parameters (Example: two Poly constructors)

Footnote: slides omit full JavaDoc comments to save space; style might
not be perfect either – focus on main ideas

19UW CSE 331 Winter 2023

Poly: observers

// returns: the degree of this,
// i.e., the largest exponent with a
// non-zero coefficient.
// Returns 0 if this = 0.

public int degree()

// returns: the coefficient of the term
// of this whose exponent is d

// throws: NegExponent if d < 0
public int coeff(int d)

20UW CSE 331 Winter 2023

Notes on observers

Observers
– Used to obtain information about objects of the type
– Return values of other types
– Never modify the abstract value
– Specification uses the abstraction from the overview

this
– The particular Poly object being accessed
– Target of the invocation
– Also known as the receiver

Poly x = new Poly(4, 3);

int c = x.coeff(3);
System.out.println(c); // prints 4

21UW CSE 331 Winter 2023

Poly: producers

// returns: this + q (as a Poly)
public Poly add(Poly q)

// returns: the Poly equal to this * q
public Poly mul(Poly q)

// returns: -this
public Poly negate()

22UW CSE 331 Winter 2023

Notes on producers

• Operations on a type that create other objects of the type

• Common in immutable types like java.lang.String
– String substring(int offset, int len)

• No side effects
– Cannot change the abstract value of existing objects

23UW CSE 331 Winter 2023

IntSet, a mutable datatype:
overview and creator

// Overview: An IntSet is a mutable,

// unbounded set of integers. A typical
// IntSet is { x1, ..., xn }.
class IntSet {

// effects: makes a new IntSet = {}
public IntSet()

24UW CSE 331 Winter 2023

IntSet: observers

// returns: true if and only if x Î this
public boolean contains(int x)

// returns: the cardinality of this

public int size()

// returns: some element of this
// throws: EmptyException when size()==0

public int choose()

25UW CSE 331 Winter 2023

IntSet: mutators

// modifies: this

// effects: thispost = thispre È {x}
public void add(int x)

// modifies: this

// effects: thispost = thispre - {x}
public void remove(int x)

26UW CSE 331 Winter 2023

Notes on mutators

• Operations that modify an element of the type

• Rarely modify anything (available to clients) other than this
– List this in modifies clause (if appropriate)

• Typically have no return value
– “Do one thing and do it well”
– (Sometimes return “old” value that was replaced)

• Mutable ADTs may have producers too, but that is less common

27UW CSE 331 Winter 2023

Perspective

• Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

• Data abstractions (ADTs) are a fundamental design idea
– Client perspective: a set of operations – a specification

• Is everything an ADT? No – there are classes/modules that
are simply bundles of data, or just collections of procedures
– But data abstractions are everywhere and a key design

and problem-solving principle

UW CSE 331 Winter 2023 28

Next time

• Implementing ADTs
– Picking concrete representations for data

abstractions (“the rep” – instance variables)
– Reasoning about implementations: rep invariants

and abstraction functions

UW CSE 331 Winter 2023 29

