
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2023

Lecture 3 – Reasoning About Loops

UW CSE 331 Winter 2023 1

Administrivia
• Reminder: HW1 out now, due Tuesday night, 11 pm

– 1 late day (max) possible, but you really don’t want to use it

• Reminder: be sure to read lecture notes as well as slides for this
and yesterday’s classes

• Reminder: readings on the calendar – Pragmatic Programmer
(PP) and Effective Java (EJ)
– The readings give “item” or “topic” numbers in the books

because they are organized that way; not pages or chapters
– Free access to these books online via UW library’s

institutional license – see the syllabus or other course
resources for access details

– You’ll get the most out of class if you make a first pass over
the readings before the associated class

UW CSE 331 Winter 2023 2

Loops

• Reference: new lecture notes that cover this material but with
more details and explanations. See the course calendar for link.

• Apology: these slides generally don’t have fancy fonts or colors
– If it helps, imagine seeing all of this done on a much wider

whiteboard… J

UW CSE 331 Winter 2023 3

Reasoning about loops

So far, two things made our code reasoning fairly straightforward:

1. When running the code, each statement executed 0 or 1 times

2. (Therefore,) trivially the code always terminates

Neither of these hold once we have loops (or recursion)
– Will consider the key ideas with while-loops
– Introduces the essential and much more general concept of

an invariant
– Will mostly ignore prove-it-terminates; brief discussion later

UW CSE 331 Winter 2023 4

What’s a loop?
To keep things simple we will only consider while loops

while (B)
S;

We don’t lose anything by this (and it simplifies our life). A for-loop
for (init, test, step) S is simply a convenient way of writing

init;
while (test) {
S;
step;

}

Other loops like for (x: collection) S can be rewritten similarly.

UW CSE 331 Winter 2023 5

Loops and Proofs

We want to analyze loops much the same way we handle other
code by inserting assertions between statements to keep track of
the program state

{ P }
while (B) {
{ assertion }
S;

}
{ Q }

So let’s do something similar to what we did for IF statements…

UW CSE 331 Winter 2023 6

☜What do we know here?

Loops and Proofs

What do we know the first time around the loop?

{ P }
while (B) {
{ P ∧ B }
S;
{ Q1 }

}
{ Q }

If the loop stops now, all we need to do is prove { Q1 ∧ !B } => { Q }
to show we have what we want.
But what if the loop isn’t done after one iteration? What do we
know the next time around?

UW CSE 331 Winter 2023 7

Loops and Proofs

What do we know the second time around the loop?

{ P }
while (B) {
{ P ∧ B } { Q1 ∧ B }
S;
{ Q2 }

}
{ Q }

If the loop stops now, all we need to do is prove { Q2 ∧ !B } => { Q }
to show we have what we want.
But what if the loop isn’t done after two iterations? What do we
know the next time around?

UW CSE 331 Winter 2023 8

Loops and Proofs

What do we know the third time around the loop?

{ P }
while (B) {
{ P ∧ B } { Q1 ∧ B } { Q2 ∧ B }
S;
{ Q3 }

}
{ Q }

If the loop stops now, all we need to do is prove { Q3 ∧ !B } => { Q }
to show we have what we want.
But what if the loop isn’t done after three iterations? What do we
know the next time around?
And what if the loop body is never executed? (B false initially)

UW CSE 331 Winter 2023 9

Loop Invariants

The complication is that we need figure out something that is right
regardless of whether the loop body executes 0, 1, 2, … times

{ P }
while (B) {
{ assertion }
S;

}
{ Q }

The essence of dealing with loops is figuring out “what’s true at the
top of the loop body every time” – we call that the (loop) invariant.

UW CSE 331 Winter 2023 10

☜What do we always know here?

Loop Initialization

Almost always a loop involves some initialization before the loop test,
so our overall loop and its proof will look like this. We need to show
the invariant holds every time we reach the start of the loop body

{ P }
initialization
{ inv }
while (B) {
{ inv ∧ B }
S;
{ inv }

}
{ inv ∧ !B } => { Q }

UW CSE 331 Winter 2023 11

☜ loop invariant, often abbreviated as { I } or { inv }
once it’s been specified the first time

{ P }
initialization
{ inv }
while (B) {
{ inv ∧ B }
S;
{ inv }

}
{ inv ∧ !B } => { Q }

To prove that our loop works properly, we
need to show:
1. That {inv} holds after the initialization

finishes, right before loop condition B
is evaluated the first time
(i.e., {P} init {inv}), and

2. If {inv ∧ B} is true at the beginning of
the loop body then {inv} is true after
the loop body executes, and

3. {inv ∧ !B} => { Q }

Note: we sometimes need to add a bit of code after the
loop to fix things up to establish { Q }, but we won’t need to
do this in our initial examples.

Loop Proofs

UW CSE 331 Winter 2023 12

Picking an invariant

Idea: capture the idea of “what is true each time around the loop
when we have done part of the total job, but are not finished yet”

– This is the inventive/creative step in writing a loop; there is
no automatic procedure for doing it

• Requires “thinking” or “guessing”
• You have been doing this all along – just never used

these words
– Invariant needs to be strong enough so that we can prove

what we need, but not so strong that the proof won’t work
– There may be many invariants that “work” but some might be

easier to reason about than others

UW CSE 331 Winter 2023 13

The BIG IDEA

Programming is a creative activity. With loops the creative part is
coming up with the loop body and invariant. Doing this in tandem
often makes it easier to come up with correct code (fewer bugs J).

Strategy (not the only way to do it, but usually very productive – try
it!) Write a loop “inside-out” in this order:
1. Choose a loop invariant and write the loop body together

– This is the inventive step
– Very often a good loop invariant is a weaker version of the

postcondition (in our stronger-weaker sense!)
2. Choose B (the loop condition) so that { inv ∧ !B } => { Q }

– (maybe after adding a few statements after the loop if
needed to make { Q } true – not used in our initial examples

3. Add initialization steps to get from { P } to { inv }
(notation: we’ll use { pre: … } for {P} and { post:…} for {Q} in examples)

UW CSE 331 Winter 2023 14

Example: sum

The first problem is trivial, but will help us understand the strategy

Problem: write a loop to set sum = 1 + 2 + … + n

What do we want?

{ post: sum = 1 + 2 + … + n }

{ pre: _________ } (we’ll figure this out later…}

UW CSE 331 Winter 2023 15

Step 1: loop invariant and body

Problem: write a loop to set sum = 1 + 2 + … + n
{ post: sum = 1 + 2 + … + n }

Invent an invariant! Idea: Weaken the post condition to get
{ inv: sum = 1 + 2 + … + k-1 } for some k

– i.e., introduce a variable k and add it to sum each time
through the loop body

– Loop body will be roughly (but check as we write/prove it)
sum = sum + k;
k = k + 1;

(why k-1 as the bound in inv instead of k? well, try both and tinker
and see which one works best!)

UW CSE 331 Winter 2023 16

Loop body

Remember that { inv ∧ B } holds before the loop and { inv } needs
to be true at the end. Let’s work it out, adding assertions between
statements using forward reasoning:

{ inv ∧ B: sum = 1 + 2 + … + k-1 ∧ B }
sum = sum + k;
{ sum = 1 + 2 + … + k }
k = k + 1;
{ sum = 1 + 2 + … + k-1 } // { inv !!! }

UW CSE 331 Winter 2023 17

Step 2: loop condition
Program so far:

{ pre: ________ }
__________; // initalization (to be done later)
{ inv: sum = 1 + 2 + … + k-1 }
while (B) { // B (to be done next)
{ inv ∧ B: sum = 1 + 2 + … + k-1 ∧ B }
sum = sum + k;
{ sum = 1 + 2 + … + k }
k = k + 1;
{ inv: sum = 1 + 2 + … + k-1 }

}
{inv ∧ !B } => { post: sum = 1 + 2 + … + n }

Next: pick B such that { inv ∧ !B } => { post }
– This is mechanical: we need !B to be (k-1 = n) !!!
– So B is !(k-1 == n) (which we’ll simplify to k-1!=n)

UW CSE 331 Winter 2023 18

Step 3: Initialization
Program so far:

{ pre: ________ }
__________; // initalization (to be done next)
{ inv: sum = 1 + 2 + … + k-1 }
while (k-1 != n)
{ inv ∧ B: sum = 1 + 2 + … + k-1 ∧ k-1 != n }
sum = sum + k;
{ sum = 1 + 2 + … + k }
k = k + 1;
{ sum = 1 + 2 + … + k-1 }

}
{inv ∧ !B } => { post: sum = 1 + 2 + … + n }

Initialization: also mechanical – set k and sum so inv holds
– sum = 0 and k = 1 will do nicely! (i.e., sum = 1 + 2 + … + k-1)
– When k = 1, this is an empty sequence 1 + … + 0 which is 0

UW CSE 331 Winter 2023 19

Finishing up
Done. But is this always correct? i.e., is { pre } = { true } ?
• Not quite – the proof only works if n >= 0, so that’s our precondition

{ pre: }
sum = 0;
k = 1;
{ inv: sum = 1 + 2 + … + k-1 }
while (k-1 != n)
{ inv ∧ B: sum = 1 + 2 + … + k-1 ∧ k-1 != n }
sum = sum + k;
{ sum = 1 + 2 + … + k-1 + k }
k = k + 1;
{ sum = 1 + 2 + … + k-1 }

}
{inv ∧ !B } => { post: sum = 1 + 2 + … + n }

UW CSE 331 Winter 2023 20

n >= 0

Recap

We spent a lot of effort to develop a simple loop. But we saw how
the proof and loop construction techniques work together:
1. Discover (invent) invariant and develop loop body and proof
2. Calculate loop condition B from { inv ∧ !B } => { post }
3. Figure out initialization and precondition to establish { inv }

What we didn’t consider: termination. Our proof only really shows
“the code is correct provided that it terminates”. Our examples will
be simple enough that termination is not an issue, but a complete
proof would need it (we’ll ignore).

– (One way to do it: figure out some sort of number or
expression that captures “how much more to do” and prove
that it eventually reaches 0.)

UW CSE 331 Winter 2023 21

More to come…

But first!

UW CSE 331 Winter 2023 22

Administrivia

• HW1 due tomorrow night 11 pm (not 11:59, not 11 pm Honolulu
time, …)
– Yes you can use one (1) late day max if you want to
– NO you don’t want to (if at all possible)….

• Discussion board:
– Please try to use descriptive subject headings so others can

easily see if there are already postings about things they have
questions about. (Can we be more precise than HW7 Q42?)

• So far pretty good this quarter – keep it up!
– It’s helpful if there is enough context in a posting to figure out

what it’s about without having to pull up a copy of the
assignment/slide/etc. and read it.

• Text is really great and compact compared to screen grabs
if you can do that. J

UW CSE 331 Winter 2023 23

Upcoming assignments and sections
• HW2 – loops, proofs, and invariants – posted later today. Due a

week from Tuesday.

• HW3 – first programming problem and infrastructure shakedown
cruise – out later this week and will be the main topic of sections
– New “Do this before section this week” writeup on the resources

page soon. Basically: install java 17, git, intellij.
– Then sections this week will explain and walk through

infrastructure and hw3 basics, and you can try on your
computer at the same time.

• Bring a laptop with installed software to section this week if
you can!

– More handouts on the web coming soon – watch for ed
announcements.

• The posted instructions are intended to work. If problems,
use the class discussion board – don’t try random things
you find on stackoverflow or web searches

UW CSE 331 Winter 2023 24

New problem: max element in array

Problem: we are given an array items with size elements. Write a loop
to store the largest value in that array in variable max.

First figure out the postcondition: we want
{ post: max = largest in items[0..size-1] }

New notation, which will be very handy for assertions about arrays: If
b is an array, then b[i..j] is the section of the array containing b[i],
b[i+1], …, b[j]. If j=i-1 the section is empty (e.g., b[0..-1]). If i=j, the
section contains one element (e.g., b[2..2] is b[2]).

Since we are using assertions and proofs as design tools, not input to
an automated proof checker, we’ll allow ourselves to use informal but
precise statements like “largest in a[i..j]” or “max of a[i..j]”

UW CSE 331 Winter 2023 25

Step 1: loop invariant and body
Strategy: go through the array one element at a time and compare
next element to previous largest value. If the new element is larger,
update largest-value-seen-so-far. Now, need a loop invariant…

The postcondition is
{ post: max = largest in items[0..size-1] }

Let’s weaken this to get a plausible invariant
{ inv: max = largest in items[0..k-1] }

Notice: we’ve just added variables k and max to our code! This is how
we discover what variables need to be declared in our code – create
and name them when we discover things we need to store!

(Why k-1? why not k? k+1? This is part of the creative step – try out
different possibilities and see which one(s) seem to work best to lead
to clean code and a simpler proof.)

UW CSE 331 Winter 2023 26

Loop body with assertions

{ inv: max = largest in items[0..k-1] }
if (max < items[k]) {
{ max = largest in items[0..k-1] ∧ max < items[k] }
max = items[k];
{ max = largest in items[0..k] }

} else {
// nothing needs updating (but need a place to write assertions)
{ max = largest in items[0..k-1] ∧ max >= items[k] }

=> { max = largest in items[0..k] }
}
{ max = largest in items[0..k] }
k = k + 1;
{ inv: max = largest in items[0..k-1] }

UW CSE 331 Winter 2023 27

Step 2: loop condition
Program so far:

{ pre: ________ }
__________; // initalization (to be done later)
{ inv: max = largest in items[0..k-1] }
while (B) { // B (to be done next)

{ inv: max = largest in items[0..k-1] }
if (max < items[k]) {
{ max = largest in items[0..k-1] ∧ max < items[k] }
max = items[k];
{ max = largest in items[0..k] }

} else {
// nothing needs updating
{ max = largest in items[0..k] }

}
{ max = largest in items[0..k] }
k = k + 1;
{ inv: max = largest in items[0..k-1] }

}
{inv ∧ !B } => { post: max = largest in items[0..size-1] }

Next: pick B such that { inv ∧ !B } => { post }
– Mechanical again: we need !B to be (k == size) !!!
– So B is !(k == size) (which we’ll simplify to k!=size)

UW CSE 331 Winter 2023 28

Now just wait a minute!!!

What’s with picking a loop condition that has != in it??
while (k != size) { … }

This code seems strange (which is a way of saying I think it has to
be wrong!) Wouldn’t it be safer to use something like k < size?

A: No. We want to be able to prove that { inv ∧ !B } => { post }. With
k != size for the loop condition we get

{inv ∧ !B } = { max = largest in items[0..k-1] ∧ !(k != size) }
=> { post: max = largest in items[0..size-1] }

With k<size we would have have to show that when k >= size we
really have k = size. Otherwise the proof doesn’t work.

– (CSE 311 veterans might enjoy a chance to show off their proof-by-
induction skills, but why complicate things if we don’t have to?)

UW CSE 331 Winter 2023 29

Step 3: Initialization
Program so far:

{ pre: ________ }
__________; // initalization (to be done next)
{ inv: max = largest in items[0..k-1] }
while (k != size) {

{ inv: max = largest in items[0..k-1] }
if (max < items[k]) {
{ max = largest in items[0..k-1] ∧ max < items[k] }
max = items[k];
{ max = largest in items[0..k] }

} else {
// nothing needs updating
{ max = largest in items[0..k] }

}
{ max = largest in items[0..k] }
k = k + 1;

{ inv: max = largest in items[0..k-1] }
}
{inv ∧ !B } => { post: max = largest in items[0..size-1] }

Initialization is also mechanical. Pick values for max and k to establish inv
– We can set max = items[0] and k = 1

UW CSE 331 Winter 2023 30

Finishing up
This code works for non-empty arrays, so we get our precondition:

{ pre: size > 0 }
k = 1;
max = items[0]
{ inv: max = largest in items[0..k-1] }
while (k != size) {

{ inv: max = largest in items[0..k-1] }
if (max < items[k]) {
{ max = largest in items[0..k-1] ∧ max < items[k] }
max = items[k];
{ max = largest in items[0..k] }

} else {
// nothing needs updating
{ max = largest in items[0..k] }

}
{ max = largest in items[0..k] }
k = k + 1;

{ inv: max = largest in items[0..k-1] }
}
{inv ∧ !B } => { post: max = largest in items[0..size-1] }

UW CSE 331 Winter 2023 31

Loose ends

• The code we’ve developed works for non-empty arrays.

• What if size is 0 (i.e., the array is empty)?
– That’s a fairly philosophical question: what is the largest

value in an empty array?
– If the code needs to work for an empty array (i.e., size==0),

the specification needs to say what to do in that case. A
couple of plausible solutions:

• Specify Integer.MIN_VALUE as the largest value in an
empty array

• Throw an appropriate exception if size is not positive

• What about size < 0? Probably an error (illegal argument
exception?) A good specification should say what happens.

UW CSE 331 Winter 2023 32

New problem: reverse an array
Problem: given an array a with n elements (a[0..n-1]), reverse the
order of the elements in a.

This is another fairly simple problem, but we want to build a correct
solution and avoid all off-by-one errors. We start with:

We want:

Notation: we’ll use A[i] (capitalized) for the value in position i in the
original array

UW CSE 331 Winter 2023 33

0 n
pre: a A[0] A[1] A[2] … … … A[n-2] A[n-1]

0 n
post: a A[n-1] A[n-2] … … … A[2] A[1] A[0]

Step 1: loop invariant and body

We’ll use the “obvious” strategy: start out by swapping the first and
last elements (a[0] and a[n-1]), then swap the next pair of elements
(a[1] and a[n-2]), and continue until we’re done.

The invariant looks like this:

(Note: it’s often very useful to think/design with diagrams. We don’t
have to restrict ourselves to the a[i..j] notation all the time, but we’ll
usually want to use that later to be precise.)

UW CSE 331 Winter 2023 34

0 n
inv: a A[n-1] A[n-2] … original order … A[1] A[0]

Array section boundaries

We need to introduce variables to keep track of the boundary
positions between the different sections of the array. A typical
solution would be to introduce a variable k and do some arithmetic:

Yuck! (😱) The n-k±1 boundary is a glaring invitation for an off-by-
one bug! Not to mention, when do we stop? k = n/2? k = n/2±1?
k > n/2? ?? Can we do something simpler?

Yes!!

UW CSE 331 Winter 2023 35

0 k? k? n-k±1? n-k±1? n
inv: a A[n-1] A[n-2] … original order … A[1] A[0]

Simpler array section boundaries

Just name the boundaries – don’t have to calculate them, do we?

We still have to decide whether the L and R variables mark the
ends of the reversed areas or the ends of the area that is still in the
original order. What should we choose?

The answer is Yes!! We do need to choose something and stick
with it, but it’s not always obvious which choice will be best. So try
out things that seem plausible, sketch the code and the proof that
results, and then pick the choice that makes things work best.

UW CSE 331 Winter 2023 36

0 L L R R n
inv: a A[n-1] A[n-2] … original order … A[1] A[0]

Invariant for reverse array

After trying alternatives, let’s label the unswapped area boundaries:

The body of the loop looks like this:

{ inv }
swap(a[L], a[R]) // use swap(…) notation for design
L = L + 1; // no ++ or --. we don’t have a
R = R - 1; // proof rule for ++ or --.
{ inv }

UW CSE 331 Winter 2023 37

0 L R n
inv: a A[n-1] A[n-2] … original order … A[1] A[0]

Step 2: loop condition

When are we done? When there are 0 or 1 elements in a[L..R] !

initialize
{ inv }
while (L < R) {
{ inv }
swap(a[L], a[R])
L = L + 1;
R = R - 1;
{ inv }

}

UW CSE 331 Winter 2023 38

0 L R n
inv: a A[n-1] A[n-2] … original order … A[1] A[0]

Step 3: initialize
Initially, the entire array is the ”original order” middle section, so set
L=0, R=n-1 to start

L = 0; R = n-1;
{ inv }
while (L < R) {
{ inv }
swap(a[L], a[R])
L = L + 1;
R = R - 1;
{ inv }

}

And we’re done! (proof that postcondition holds at the end is left to the
reader. J) UW CSE 331 Winter 2023 39

0 L R n
inv: a A[n-1] A[n-2] … original order … A[1] A[0]

New problem: binary search
Problem: We are given a value x and a sorted array a with n
elements (i.e., a[0] <= a[1] <= … <= a[n-1]). Find the location of x
in the array.

We’ll use the usual strategy: look in the middle, compare to x, then
eliminate half of the array from consideration based on the
comparison. Quit when we’ve found x if it is present.

But if we do that in the “usual” way, we get a postcondition that is a
mess: what if there are multiple copies of x in a, what if x is not
present, what if x is larger or smaller than anything in a, …?

UW CSE 331 Winter 2023 40

0 mid n
post: a <x?, <=x? x? >x, >=x?

Binary search postcondition
We would like a postcondition that “works” regardless of whether x
is in the array or not, whether or not there are multiple copies of x,
and so forth. After trying several alternatives, let’s pick this:

More precisely: { post: a[0..L] <= x ∧ a[R..n-1] > x ∧ L+1 = R }

If there are one or more copies of x in the array, they will be at a[L],
a[L-1], … . The final regions a[0..L] or a[R..n-1] might be empty if x
is smaller or larger than everything in the array. (We would have
either L=-1 or R=n in those cases.)

UW CSE 331 Winter 2023 41

0 L R n
post: a <= x > x

Step 1: loop invariant and body

Weaken the postcondition to get the invariant:
a[0..L] <= x ∧ a[L+1..R-1] not searched ∧ a[R..n-1] > x

The loop is the usual one:
while (___________) {
mid = (L + R) / 2; // truncating division
if (a[mid] <= x)
L = mid;

else // a[mid] > x
R = mid;

}

UW CSE 331 Winter 2023 42

0 L R n
inv: a <= x unknown > x

Whoa! Wait a minute!!!!
You can’t do that! You have to test a[mid] == x and STOP if it is!!!

Absolutely not!! remember we want a clean postcondition

and if we stop in the middle, we get a mess like this!

(It also turns out that stopping in the middle does not reduce
number of iterations enough to matter, but it makes every loop
iteration slower because of the extra == test!)

UW CSE 331 Winter 2023 43

0 L mid R n
inv: a <= x ??? x ??? > x

0 L R n
post: a <= x > x

Step 2: loop condition

When are we done? When L and R are right next to each other.
that gives us the loop condition.

while (L+1 != R) {
mid = (L + R) / 2;
if (a[mid] <= x)
L = mid;

else // a[mid] > x
R = mid;

}

UW CSE 331 Winter 2023 44

0 L R n
post: a <= x > x

Step 3: Initialization

When we start out, a[0..n-1] is the “unknown” region, which is
a[L+1..R-1] according to our invariant. Initialize L, R accordingly.

L = -1; R = n; // initialize: a[0..L] and a[R..n-1] empty
while (L+1 != R) {
mid = (L + R) / 2;
if (a[mid] <= x) // not a bug. 0 <= mid < n always
L = mid;

else // a[mid] > x
R = mid;

}

UW CSE 331 Winter 2023 45

L 0 R = n
pre: a a[L+1..R-1] unknown

What do we know when we’re done?

When the loop terminates we have

• If x appears in the array, then a[L] = x, and if there are multiple
copies, so is a[L-1], … .

• If x is larger than all array elements, a[R..n-1] is empty, R = n,
and L = n-1.

• If x is smaller than all array elements, then a[0..L] is empty,
L = -1, and R = 0.

• So x is in the array if
found = (L >= 0) && (a[L] == x); // short-circuit && required

(Precondition footnote: works for non-empty arrays (n>0). Add code if needs to work for n==0.)

UW CSE 331 Winter 2023 46

0 L R n
post: a <= x > x

New problem: Dutch National Flag

Given an array of red, white, and blue pebbles, sort the array so the
red pebbles are at the front, white are in the middle, and blue are at
the end

– [Use only swapping contents rather than “count and assign”]

UW CSE 331 Winter 2023 47

Edsgar Dijkstra

Pre- and post-conditions

Precondition: Any mix of red, white, and blue

Postcondition:
– Red, then white, then blue
– Number of each color same as in original array

UW CSE 331 Winter 2023 48

Mixed colors: red, white, blue

Red White Blue

Step 1: loop invariant and body

Lots of possibilities. Here are some… J

UW CSE 331 Winter 2023 49

Red White Blue MixedMixed

Red White BlueMixedMixed

Red White BlueMixed Mixed

Red White BlueMixed Mixed

Red White BlueMixed Mixed Mixed

But wait!! There’s more!!!

Simpler is very likely better. Let’s minimize the number of regions

Middle two are probably more useful since we won’t have to move
red and blue pebbles once they are in place. We’ll go with #2.

UW CSE 331 Winter 2023 50

Red White Blue Mixed

Red White BlueMixed

Red White BlueMixed

Red White BlueMixed

More precise, and then some code

• Precondition P: a contains r reds, w whites, and b blues
• Invariant: P ∧ 0 <= i <= j <= k <= n

∧ arr[0..i-1] is red
∧ arr[i..j-1] is white
∧ arr[j..k-1] is mixed
∧ arr[k..n-1] is blue

• Postcondition: P ∧ 0 <= i <= j = k <= n
∧ a[0..i-1] is red
∧ arr[i..j-1] is white
∧ arr[k..n-1] is blue

• Initialization to establish the invariant: i=0; j=0; k=n;

UW CSE 331 Winter 2023 51

Red White BlueMixed

Red White Blue

Mixed colors: red, white, blue

The loop test and body (one pass)

0 i j k n

i = 0; j = 0; k = n;
while(j!=k) {
if(arr[j] == White) {

j = j+1;
} else if (arr[j] == Blue) {

swap(arr[j],arr[k-1]);
k = k-1;

} else { // arr[j] == Red
swap(arr[i],arr[j])
i = i+1;
j = j+1;

}
} UW CSE 331 Winter 2023 52

Red White BlueMixed

Termination – what we skipped so far
• Two kinds of loops

– Those we want to always terminate (normal case)
– Those that may conceptually run forever (e.g., web-server)

• So, proving a loop correct usually also requires proving termination
– We haven’t been proving this: might just preserve invariant

forever without test ever becoming false
– Our Hoare triples say if loop terminates, postcondition holds
– Our loops have been simple enough that termination has been

obvious, so we’ve skipped it up to now (and will in hw also)

• How to prove termination (variants exist):
– Map state to a natural number somehow (just “in the proof”)
– Prove the natural number goes down on every iteration
– Prove test is false by the time natural number gets to 0

UW CSE 331 Winter 2020 53

Termination examples

• Reverse array: size of the unprocessed part of the array (initially
array length, decreases by 2 each time through the loop, done
when unprocessed length is 0 or 1)

• Binary search: size of range still to be considered

• Dutch-national-flag: size of range not yet partitioned (k-j)

• Search in a linked list: length of list not yet considered
– Don’t know length of list, but goes down by one each time…
– … unless list is cyclic in which case, termination not assured

UW CSE 331 Winter 2020 54

Perspective – When do we need proofs?

• Most loops are so “obvious” that proofs are, in practice, overkill
– for(String name : friends) {...}

• Don’t write a loop if a library has what you need
– You probably will rarely if ever need to write reverse – use a

list container or library function that reverses arrays.
– Use the library version of binary search, don’t re-invent the

wheel.

• Use a for loop when it makes sense (compact, easier to read,
index variable declared locally, don’t need a while loop to
provide places to put assertions, etc.)
– for (init; test; step) {...}

UW CSE 331 Winter 2020 55

When to use proofs for loops
• Use logical reasoning when intermediate state (invariant) is

unclear or edge cases are tricky or you need inspiration, etc.

• Use logical reasoning as an intellectual debugging tool
– What exactly is the invariant?
– Is it satisfied on every iteration?
– Are you sure? Write code to check?
– Did you check all the edge cases?
– Are there preconditions you did not make explicit?

• You don’t need this for easy loops. It can become essential for
hard loops (or other tricky code).
– Must include invariant as a comment in the code if it’s tricky

– otherwise how is someone reading the code supposed to
understand why it works, how it works, and why it’s correct?

UW CSE 331 Winter 2020 56

Proofs, code, and tools

• Software tools that analyze programs using proof techniques
are ubiquitous in industry these days
– Many variations on the kinds of logics used and how the

tools work and what they can discover

• Because of computability/decidability results (cf CSE 311), no
tools can be both complete (always can answer right/wrong) and
correct (always gives the right answer)
– In practice static analysis tools try to find as many potential

problems as possible without raising too many false alarms

• The ideas we’ve learned should help you take advantage of
tools and give you better insight into what they are doing

UW CSE 331 Winter 2023 57

Onward…

• Reasoning about programs and how to “talk about” what a
program should do and what it means for software to be
“correct” is fundamental.

• We will use these ideas repeatedly in specifications, design of
data structures and abstractions, reasoning about correctness of
implementations, testing, and many other places.
– and when writing tricky loops. J

• But before we move on completely: hw2 will be out after class
(problems and proofs with loops). Due next Tuesday, 11 pm

UW CSE 331 Winter 2023 58

