
 CSE 331 23wi Final Exam 3/14/23

 Page 1 of 20

Name ___ UW Netid ______________@uw.edu

There are 11 questions worth a total of 110 points. Please budget your time so you get to all of
the questions. Keep your answers brief and to the point. Many of the questions have short
solutions, even if the question is somewhat long – don’t be alarmed. If you don’t remember the
exact syntax of some command or the format of a command’s output, make the best attempt you
can. We will make allowances when grading.

The exam is closed book, closed notes, closed electronics, closed mouth, open mind. However,
you may have two 5x8 notecards with any hand-written notes you wish.

Please do NOT remove any pages from the middle of the exam. Longer code pages needed
for some questions are included at the end of the exam, and you should remove those for
reference while you are working on the exam. Please return them for recycling after the exam.

There are two additional blank pages with extra space for your answers if you need more room
after all the questions but before the detachable code pages.

For any questions involving proofs, assertions, invariants, and so forth, you should assume that
all numeric quantities are unbounded integers (i.e., overflow cannot happen) and that integer
division is truncating division as in Java, i.e., 5/3 evaluates to 1.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 110

1. ______ / 10

2. ______ / 12

3. ______ / 12

4. ______ / 12

5. ______ / 10

6. ______ / 8

7. ______ / 8

8. ______ / 14

9. ______ / 12

10. ______ / 10

11. ______ / 2

 CSE 331 23wi Final Exam 3/14/23

 Page 2 of 20

Question 1. (10 points) Specifications and implementations. Here are four possible
specifications for a method that returns the location of the first occurrence of a character ch in a
string s.

Specification A
 @requires s != null
 @return the index of the first occurrence of ch in s or -1 if ch is not found in s

Specification B
 @requires s != null and ch appears at least once in string s
 @return the index of the first occurrence of ch in s

Specification C
 @return the index of the first occurrence of ch in s or -1 if ch is not found in s
 @throws IllegalArgumentException if s == null

Specification D
 @requires s != null
 @return the index of the first occurrence of ch in s
 @throws NoSuchElementException if ch does not appear in s

Now suppose we have four different implementations I1 through I4, each of which is known to
satisfy one of the above specifications. Since an implementation that satisfies a stronger
specification will also satisfy a weaker specification, it’s entirely possible that some of the
implementations might satisfy additional specifications beyond the one already shown below in
the table.

Add an X in the following table in every square where the implementation given in the left
column will also satisfy the specification shown in the top row. An X has already been supplied
for each implementation and the specification it is known to satisfy.

Hint: it might (or might not) be useful to think about which specifications are stronger or weaker
than others.

impl \ spec spec. A spec. B spec. C spec. D

impl. I1 X

impl. I2 X

impl. I3 X

impl. I4 X

 CSE 331 23wi Final Exam 3/14/23

 Page 3 of 20

The next two question concern a set of classes that represent magical creatures including elfs,
gremlins, and dragons. The code for these questions is on the pages at the end of the exam. You
should tear off those pages and use them with this question.

Question 2. (12 points) Overloading and Overriding. The following table contains in the left
column lines of code from a main program that uses the magical creature classes from the code
at the end of the exam. Your job is to write in the right column the output produced when the
corresponding line of code is executed. (All of the code compiles and executes without errors.)
If a line of code produces more than one line of output, write all of the output in that table entry
in the correct order. If a line of code produces no output, leave the corresponding entry in the
table blank. The lines of code are executed in order they appear in the table.

a) MagicalCreature legolad = new Elf();

b) legolad.demeanor();

c) legolad.useMagic();

d) Gremlin bojo = new Gremlin();

e) bojo.useMagic();

f) bojo.useMagic("42");

g) Elf sproot = new Gremlin();

h) sproot.useMagic();

i) MagicalCreature fafner = new Dragon();

j) fafner.useMagic("451");

 CSE 331 23wi Final Exam 3/14/23

 Page 4 of 20

Question 3. (12 points, 1 each) And now for the dreaded generics question. J Using the
creature class hierarchy from the previous question, assume we have the following variables:

Object o; MagicalCreature mc; Elf e; Gremlin g; Dragon d;

List<?> lq;
List<Elf> le;
List<? super Elf> lse;
List<? extends Elf> lee;

For each of the following, circle OK if the statement has correct Java types and will compile
without type-checking errors; circle ERROR if there is some sort of type error. (Notes: the
question only asks about type checking, so it doesn’t matter whether the argument 0 in get(0)
is out-of-bounds or not. The type checker also does not consider the actual values stored in
variables when deciding if they are being used properly.)

a) OK ERROR lq.add(e);

b) OK ERROR le.add(e);

c) OK ERROR lse.add(e);

d) OK ERROR lee.add(e);

e) OK ERROR le.add(g);

f) OK ERROR lse.add(g);

g) OK ERROR lee.add(g);

h) OK ERROR o = le.get(0);

i) OK ERROR mc = le.get(0);

j) OK ERROR e = lse.get(0);

k) OK ERROR e = lee.get(0);

l) OK ERROR g = lee.get(0);

 CSE 331 23wi Final Exam 3/14/23

 Page 5 of 20

Specifications and things. It’s preregistration time for next quarter and we have been working on
a program to represent a list of students in a course. The code has two classes: StudentInfo
and ClassList. The code for these classes is on a separate page at the end of the exam. You
should detach that page and refer to it while reading and answering these questions.

Class StudentInfo represents the information about one student: a first and last name, and a
student ID number. The names can be changed since a student can change their preferred name,
but the ID number is immutable. To save space on the exam, the fields in this object are
public so we can omit get and set methods.

The ClassList class stores a list of StudentInfo objects representing the students who are
enrolled in a single course. The representation of this class is a simple list with a representation
invariant that the list does not contain any null elements and no two StudentInfo objects in
the list have the same ID number.

Question 4. (12 points) equals and hashCode. Two StudentInfo objects are considered
to be equal if they have identical idNum fields, ignoring the first and last name fields. Below,
write the Java code for an appropriate equals and a hashCode method to be included in class
StudentInfo. You do not need to include JavaDoc comments (to save time).

 CSE 331 23wi Final Exam 3/14/23

 Page 6 of 20

Question 5. (10 points, 5 each) Method specifications. The methods in ClassList do not
have proper specifications. Give appropriate CSE331-style JavaDoc specifications for methods
isRegistered and add. For CSE331 custom tags like @requires (or any others) you are free
to write @requires or @spec.requires. You should base your specifications on the intended
behavior you can infer from the given code. If more than one specification is reasonable, give the
one that would be best if this code were included in a publicly distributed library. Be sure to
include a method summary (synopsis) at the beginning of each comment.

/**
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */
public boolean isRegistered(StudentInfo s) { ... }

/**
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */
public boolean add(StudentInfo s) { ... }

 CSE 331 23wi Final Exam 3/14/23

 Page 7 of 20

Question 6. (8 points) Rep Invariants and forward reasoning. A rep invariant acts as both a
precondition and a postcondition for a public method of an ADT like ClassList. For the
ADT ClassList, the rep invariant is

// RI: students contains no nulls, and no two StudentInfo objects
// in students have the same idNum values.

We would like to use forward reasoning to verify that the add method preserves the rep
invariant. Add annotations (proof assertions) in the following code to show that this is true.
Notes: (i) Your proof will be somewhat informal, since it will not include the same level of
detail as we had in problems where we were reasoning about the values of integer variables. The
key thing is to be sure to assert facts that can be combined and used to show that the rep invariant
holds when the method returns to the caller.
(ii) Method add calls isRegistered. You can treat that inner method call as a single
statement whose properties are given by the specification of isRegistered, and you do not
need to trace or prove properties of that method.
The code for add is given below, with space for you to add assertions as needed. You should
show that the rep invariant holds right before each return statement.

 public boolean add(StudentInfo s) {

 { RI } // rep invariant holds here

 if (s == null) {

 throw new IllegalArgumentException();

 }

 if (isRegistered(s)) {

 return false;

 }

 students.add(s);

 return true;

 }

 CSE 331 23wi Final Exam 3/14/23

 Page 8 of 20

Question 7. (8 points) Representation exposure (the question that didn’t get included in the
midterm J)

We’ve decided that the ClassList ADT would be much more useful if it included a method
that would return the list of StudentInfo objects stored in the ClassList. So we’ve added
the following method:

 // return the list of students in this course
 public List<StudentInfo> getStudentList() {
 return Collections.unmodifiableList(students);
 }

(a) (5 points) Does this method create a representation exposure problem for the class
ClassList? Why or why not? (briefly – one or two sentences.)

(b) (3 points) If there is a representation exposure problem (given in your answer to part (a)),
how could we fix it? If there is no representation exposure possible in the original code, as
explained in your answer to part (a), simply write “no changes needed” below.

 CSE 331 23wi Final Exam 3/14/23

 Page 9 of 20

Question 8. (14 points) React. At the end of this exam, you will find the code from two React
files App.tsx and Item.tsx. This React app is a very simple storefront for the CSE 331
Café, which sells Blueberry Muffins and Chocolate Chip Cookies. The web interface shows the
name of each item and how many are available, and has a Buy button for each item that the user
can click to buy one item. The store interface also shows the total number of items sold so far
(cookies plus muffins).

(a) (7 points). Suppose we have the following two files included as part of this React app.

Index.html
 <html>
 <body>
 <div id="root"></div>
 </body>
 </html>

Index.tsx
 ReactDOM.render(<App />, document.getElementById('root'));

When this React app is loaded into a browser, what is the HTML code that is generated by the
React program and sent to the browser? You should show the HTML as it would appear initially
before any buttons have been clicked to buy any muffins or cookies. The outer tags have been
written for you. You need to add the HTML that would be generated by the React program.

 <html>
 <body>

 </body>
 </html>
(continued on next page)

 CSE 331 23wi Final Exam 3/14/23

 Page 10 of 20

Question 8. (cont.) (b) (6 points) There are initially two (2) Blueberry Muffins in stock.
Suppose we click the Buy button for Blueberry Muffins three (3) times. What messages are
written to the console log when we do this? (i.e., trace through execution of the React code and
write down all of the console.log messages that are produced as we click the Blueberry
Muffins Buy button three times.)

(c) (1 point) An ordinary user, of course, does not read messages written to the JavaScript
console.log. When the user clicks the Buy button for Blueberry Muffins the third (3rd)
time, what do they observe happening as a result of that third click?

 CSE 331 23wi Final Exam 3/14/23

 Page 11 of 20

Question 9. (12 points, 2 each) Design patterns. Here are some of the design patterns we have
discussed or used this quarter:

Adapter, Builder, Composite, Decorator, Dependency Injection, Factory method, Factory object,

Flyweight, Iterator, Intern, Interpreter, Model-View-Controller (MVC), Observer, Procedural,

Prototype, Proxy, Singleton, Visitor

For each of the following design problems or situations, write the name of the design pattern
from the above list that is the best or most appropriate pattern to use or is used in this situation.

(a) In a React program, the props passed to a button component includes a function that the
button is supposed to call when the button is clicked.

(b) In a simulation of an aquarium, we want to be sure that all of the fish objects share the same
random number generator object to be sure that there is only one source of random numbers in
the program.

(c) We have a library function that performs calculation using metric units (meters, etc.) and we
want to use it to implement a function that does the same thing, only with U.S. units (feet, etc.)

(d) We have a program that uses Strings and, to save space, we want to be sure that each
unique String value is only stored once in the program.

(e) We have a program that uses Complex number objects, but we have two possible
implementations of Complex – one uses rectangular coordinates, the other uses Polar. We want
the program to be able to select during execution which version to use when a new Complex
object is created, and not have that decision fixed when the program is compiled.

(f) We have a complicated object with many configuration options. We would like to organize
the creation of this object so we can do it in multiple steps rather than needing to have a
constructor with 12 parameters to set all of the configuration options all at once.

 CSE 331 23wi Final Exam 3/14/23

 Page 12 of 20

Question 10. (10 points, 2 each) System integration. When building a large system, there are
two common strategies for the order in which to implement, combine, and test the different parts
of the system: top-down and bottom-up. These two strategies have different characteristics and
strengths.

For each of the following, circle “top-down” or “bottom-up” if that strategy is the best match to
the description. If both strategies are a good match or are equally effective at solving the
problem, circle “both”. If neither strategy matches the description or neither is particularly
effective at or relevant to solving the problem, circle “neither”.

(a) Best at discovering early whether the network module that processes transactions will be able
to handle the anticipated network traffic volume.

 top-down bottom-up both neither

(b) Best for discovering early if there are major usability or human interface design problems in
the system specification.

 top-down bottom-up both neither

(c) Requires building “mock objects” or stubs in order to test a component that is being
developed.

 top-down bottom-up both neither

(d) Requires a good set of unit tests for each module to verify that it works as expected in
isolation before combining it with other modules.

 top-down bottom-up both neither

(e) Best for showing visible progress that can be observed by clients and funding agencies or
investors.

 top-down bottom-up both neither

A

B

F

C D

G

E

 CSE 331 23wi Final Exam 3/14/23

 Page 13 of 20

Question 11. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

Draw a picture of something that you plan to do during spring break!

Congratulations from the CSE 331 staff!
Have a great break and we’ll see you when you get back!!

 CSE 331 23wi Final Exam 3/14/23

 Page 14 of 20

Additional space for answers if needed. Please indicate clearly which questions you are
answering here, and also be sure to indicate on the original page that the rest of the answer
can be found here. Do not detach this page from the exam.

 CSE 331 23wi Final Exam 3/14/23

 Page 15 of 20

Additional space for answers if needed. Please indicate clearly which questions you are
answering here, and also be sure to indicate on the original page that the rest of the answer
can be found here. Do not detach this page from the exam.

 CSE 331 23wi Final Exam 3/14/23

 Page 16 of 20

Additional space for answers if needed. Please indicate clearly which questions you are
answering here, and also be sure to indicate on the original page that the rest of the answer
can be found here. Do not detach this page from the exam.

 CSE 331 23wi Final Exam 3/14/23

 Page 17 of 20

Code representing various enchanted creatures for questions 2 and 3. Remove this page from
the exam and use it while answering those questions.

abstract class MagicalCreature {
 public abstract void demeanor();
 public void useMagic() { System.out.println("Alakazam!"); }
 public void useMagic(String password) {
 System.out.println("Secret magic " + password); }

class Elf extends MagicalCreature {
 public void demeanor() { System.out.println("Pleasant."); }
 public void useMagic(String password) {
 System.out.println("Three wishes " + password); }
}

class Gremlin extends Elf {
 public void demeanor() { System.out.println("Mischievous."); }
 public void useMagic() {
 System.out.println("No magic for you!"); }
}

class Dragon extends MagicalCreature {
 public void demeanor() { System.out.println("Angry"); }
 public void useMagic(String password) {
 useMagic();
 System.out.println("Fire breathing magic " + password); }

}

 CSE 331 23wi Final Exam 3/14/23

 Page 18 of 20

StudentInfo and ClassList code to be used to answer questions 4 through 7. Remove
this page from the exam and use it while answering those questions.

// Simple data record for one student.
// Student names are mutable; id numbers are immutable.
class StudentInfo {
 public String firstName;
 public String lastName;
 final public int idNum;

 // insert equals() and hashCode() methods here. See question ###.

 @Override
 public String toString() {
 return "StudentInfo("+lastName+", "+firstName+" ("+idNum+")";
 }
}

// collection of students in a course
public class ClassList {
 // rep invariant: students contains no nulls and no two students
 // have the same idNum
 List<StudentInfo> students;

 // construct a new, initially empty ClassList
 public ClassList() {
 students = new ArrayList<StudentInfo>();
 }

 // return true if a student with s.idNum is in this course
 public boolean isRegistered(StudentInfo s) {
 assert(s != null);
 for (StudentInfo student: students) {
 if (student.idNum == s.idNum) {
 return true;
 }
 }
 return false;
 }

 // add student to course if not already registered
 public boolean add(StudentInfo s) {
 if (s == null) {
 throw new IllegalArgumentException();
 }
 if (isRegistered(s)) {
 return false;
 }
 students.add(s);
 return true;
 }
}

 CSE 331 23wi Final Exam 3/14/23

 Page 19 of 20

React code to be used to answer question 8. Remove this page from the exam and use it while
answering that question.

App.tsx

import React, {Component} from "react";
import Item from "./Item";

interface AppState {
 totalSold: number; // total number of items sold
}

class App extends Component<{}, AppState> {

 constructor(props: {}) {
 super(props);
 this.state = {
 totalSold: 0
 }
 }

 increaseSoldCount = () => {
 console.log("CSE331 Cafe has sold one more item!");
 this.setState({
 totalSold: this.state.totalSold + 1
 });
 }

 render() {
 return (
 <div>
 <h1>CSE331 Cafe</h1>
 {/* Cafe inventory: */}
 <Item name={"Blueberry Muffin"} quantity={2}
 onSale={this.increaseSoldCount}></Item>
 <Item name={"Chocolate Chip Cookie"} quantity={3}
 onSale={this.increaseSoldCount}></Item>
 <p>Sold {this.state.totalSold} items so far!</p>
 </div>
);
 }
}

export default App;

(additional code for this problem appears on the next page)

 CSE 331 23wi Final Exam 3/14/23

 Page 20 of 20

Additional React code for question 8. Remove this page from the exam and use it while
answering that question.

Item.tsx

import React, { Component } from "react";

interface ItemProps {
 name: string; // Name of item
 quantity: number; // Initial number of item
 onSale: () => void; // callback for when object is sold
}

interface ItemState {
 quantity: number; // Current number of this item in stock
}

class Item extends Component<ItemProps, ItemState> {
 constructor(props: any) {
 super(props);
 this.state = {
 quantity: this.props.quantity,
 };
 };

 sellItem = () => {
 console.log("Selling a " + this.props.name);
 // Only sell the thing if there are some left
 if (this.state.quantity > 0) {
 console.log("Updating quantity to: " + (this.state.quantity-1));
 this.setState({
 quantity: this.state.quantity - 1
 });
 this.props.onSale();
 } else {
 console.log("Cannot update quantity, no items to sell.");
 alert("Sorry, sold out!");
 }
 };

 render() {
 return (
 <div>
 <p>Item: {this.props.name},
 Remaining: {this.state.quantity}</p>
 <button onClick={this.sellItem}>Buy</button>
 </div>
);
 }
}

export default Item;

