Discussion: What was the most valuable thing you learned this summer?
Reminders

• Please fill out course evals ASAP
 • Very valuable to me as a new instructor!

Upcoming Deadlines

• Submit *all* work by today at 11pm
• Check Canvas assignment grades on Monday
Last Time...

• End-of-quarter timeline
 • Lectures
 • Final Grades
• Short discussion
 • Accessibility

Today’s Agenda

• Project Demos
• Course Wrap-up
Grading Timeline

• All work needs to be submitted to us by **Friday** at 11pm

• Course staff will finish grading HW9 and regrades by **Sunday evening**

• Grades will be posted on Canvas on late **Sunday night**
 – You should check that these are consistent with what you expected!

• Soham will calculate final GPA based on these grades on **Monday**
 – This is when I will account for extra credit and special circumstances

• Grades due to the university on **Tuesday at noon**
Project Demos
What was it all about?

But first....
Huge thanks to the folks who made it work

Course staff: 5 Amazing TAs:

Edison Leung, Ken Matsui, Katherine Murphy, Thrisha Ramesh, and Tanay Vakharia.

This course is itself a sophisticated (or at least really, really complicated) system requiring savvy design and implementation

And a big thanks to you for all you’ve done!
4 slides from Lecture 1...
What are the goals of CSE 331?

Learn the skills to be able to contribute to a modern software project
 - move from CSE 143 problems toward what you’ll see in industry and in upper-level courses

Specifically, how to write code of
 - higher quality
 - increased complexity

We will discuss tools and techniques to help with this and the concepts and ideas behind them
 - there are timeless principles to both
 - widely used across the industry
What is high quality?

Code is high quality when it is

1. **Correct**
 Everything else is of secondary importance

2. Easy to **change**
 Most work is making changes to existing systems

3. Easy to **understand**
 Needed for 1 & 2 above
What we will cover in CSE 331

- Everything we cover relates to the 4 goals
- We’ll use Java but the principles apply in any setting

Correctness

1. **Tools**
 - Git, IntelliJ, JUnit, Javadoc, ...
 - Java libraries: equality & hashing
 - Adv. Java: generics, assertions, ...
 - debugging

2. **Inspection**
 - reasoning about code
 - specifications

3. **Testing**
 - test design
 - coverage

Changeability

- specifications, ADTs
- listeners & callbacks

Understandability

- specifications, ADTs
- Adv. Java: exceptions
- subtypes

Modularity

- module design & design patterns
- event-driven programming, MVC, GUIs
Back to Goals

• CSE 331 will teach you to how to write correct programs

• What does it mean for a program to be correct?
 – Specifications

• What are ways to achieve correctness?
 – Principled design and development
 – Abstraction and modularity
 – Documentation

• What are ways to verify correctness?
 – Testing
 – Reasoning and verification
Some new slides to tie the pieces together...
How CSE 331 fits together

<table>
<thead>
<tr>
<th>Lectures: ideas</th>
<th>⇒</th>
<th>Assignments: get practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications</td>
<td>⇒</td>
<td>Design classes</td>
</tr>
<tr>
<td>Testing</td>
<td>⇒</td>
<td>Write tests</td>
</tr>
<tr>
<td>Subtyping</td>
<td>⇒</td>
<td>Write subclasses</td>
</tr>
<tr>
<td>Equality & identity</td>
<td>⇒</td>
<td>Override equals, use collections</td>
</tr>
<tr>
<td>Generics</td>
<td>⇒</td>
<td>Write generic classes</td>
</tr>
<tr>
<td>Design patterns</td>
<td>⇒</td>
<td>Larger designs; MVC</td>
</tr>
<tr>
<td>Reasoning, debugging</td>
<td>⇒</td>
<td>Correctness, testing</td>
</tr>
<tr>
<td>Events</td>
<td>⇒</td>
<td>GUIs, Accessibility</td>
</tr>
<tr>
<td>Systems integration</td>
<td>⇒</td>
<td>N/A</td>
</tr>
</tbody>
</table>
What you have learned in CSE 331

Compare your skills today to 10 weeks ago
- Theory: abstraction, specification, design
- Practice: implementation, testing
- Theory & practice: correctness

Bottom line aspiration: Much of what we’ve done would be easy for you today
This is a measure of how much you have learned

There is no such thing as a “born” programmer!

Genius is 1% inspiration and 99% perspiration.
Thomas A. Edison
What you will learn later

• Your next project can be much more ambitious
 – Try to apply the techniques and tools we’ve given you

• Know your limits
 – Be humble (reality helps you with this)

• You will continue to learn
 – Building interesting systems is never easy
 – Practice is a good teacher
 • Requires thoughtful introspection
 • Don’t learn only by trial and error!
 – Voraciously consume ideas and tools
What comes next?

Higher-level Courses
- CSE 403 Software Engineering
 - Focuses more on requirements, software lifecycle, teamwork
- Capstone projects
- Any class that requires software design and implementation

Research
- In software engineering & programming systems
- In any topic that involves software

Having an impact on the world
- Jobs (and job interviews)
- Larger programming projects
• System building is fun!
 – It’s even more fun when you’re successful!!

• Pay attention to what matters
 – Take advantage of the techniques and tools you’ve learned (and will learn!)

• On a personal note:
 – Don’t be a stranger: I love to hear how you do in CSE and beyond as alumni
 – I am proud of all of you!

• Closing thoughts?
Before next class...

- Wrap-up any regrades for HW1-8
 - Won’t accept late work after tonight at 11pm

- Fill out course evaluations for me and the TAs
 - Also remember to nominate your TA for the Bob Bandes award

- Complete the Google Form about additional work on Ed
 - Tell me what other contributions you made to the course

- Check Canvas grades on Monday