CSE 331 Summer 2023 - HW2

General Rules:

For logical operators, you may use words (e.g., “or”) or any standard symbols (e.g., “V”).
Assume that all numbers are integers. Do not worry about overflow.

Simplify but do not weaken (i.e., change the set of described states) in your assertions.
For these problems, you will not need to use subscripts. When applicable, rewrite your
assertions to only refer to the current state of variables rather than using subscripts.

o“_n

In problems 7 and 8, you may use “n” as a short-hand for “A.length”

1. Forward reasoning with assignment statements. Find the strongest postcondition for each

sequence using forward reasoning, writing the appropriate assertion in each blank space.

a.

{{o<x<100}}

y =X;

{{ 1
z =y - 2

{{ 1
X =Yy - Z;

{{ 1
{{o<x<50}}

X = X + 50;

{{ 1
x = x / 10;

{{ 1
X =10 - X;

{{ 1

2. Backward reasoning with assignment statements. Find the weakest precondition for each sequence

using backward reasoning, writing the appropriate assertion in each blank space.

{{ 1
X =X/ 2; (be careful — consider how integer division works in your assertion)
{{ 1}
y = x - 3;

{{o<y<8}}

{{ 1
Z =V - 2;

{{ 1
X = 2w - 4;

{{ 1
y = 2%z;

{{o<xandx<y}}



CSE 331 Summer 2023 - HW2

3. Forward reasoning with if/else statements. Find the strongest postcondition for the following
conditional statement using forward reasoning, inserting the appropriate assertion in each blank.

{{o<x<40}}

if (x <= 20)

{{ 1

y = 3;

{{ 1
else

{{ 1

y = 2;

{{ 1
{{ 1

4. Backward reasoning with if/else statements. Find the weakest precondition for the following
conditional statement using backward reasoning, inserting the appropriate assertion in each blank.

{{

1}

if (x >= 10)
{{

I

y = x - 4;

{{

1}

else

{{

1

y =2%*x;
{

1

{{o<y=<20}

5. Weakest conditions. Circle the weakest condition in each list.

a. {{x<0}}
b. {{b!=5}}
c. {{x>1landy>x}}

d. {{x>landy>x}}

{{x<3}
{{Ibl =5}
{{x>1lory>1}}

{{x>1landy>1}}

{{x<5}
{{b<-5}
{{x>1lory>x}}

{{x>1and (ify>x, theny>1)}}



CSE 331 Summer 2023 - HW2

6. Verifying correctness. For each block of code, fill in the intermediate assertions in the direction
indicated by the arrows. Finally, state whether the code is correct (i.e., whether all triples are valid).

a. {{3=<x}}
y = X + 4;
{{ 1}
X 2%x;
{{ 1}
y =y +X
{{14<y}}

b. {{x<3}}
y=3*x
{{ 1
X =X * 6;
{{ 1
zZ =X -9;

{{z<y}}

c. {{x<100}}

if (y > x)
{{ 1
X =y - X;
{{ 1}
else
{{ 1}
X =y / X; (becareful —consider how integer division works in your assertion)
{{ 1

{{1<x}



CSE 331 Summer 2023 - HW2

7. Verifying correctness of loops. Fill in the missing assertions by reasoning in the direction indicated
by the arrows. Then, in the places where two assertions appear next to each other with no code
between (see the “?”s), provide an explanation of why the top assertion implies the bottom one.

Below, find([4, 5, 6], 6) returnstheindex 2 and find([4, 5, 6], 7) returns -1.

{{Pre: }}

int find(int[] A, int val) {
{{ 1
int i = 0;
{{ 1}

{{Inv: A[O] !=val, A[1] !=val, ..., A[i-1] I=val }}
while (i != A.length) {

{f 1
if (A[i] == val) {
{{ 1

{{ Post: A[i] =val }}

return i;
} else {
{{ i
{{ I
{{ 1
i=1+1;
{{ 1

{{ A[O] !=val, A[1] !=val, ..., A[i-1] !=val and i = A.length }}

{{ Post: A[0] !=val, A[1] !=val, ..., A[n-1] !=val }}
return -1;



CSE 331 Summer 2023 - HW2

8. More loop correctness. Fill in the missing assertions by reasoning in the direction indicated by the
arrows. Then, in the places where two assertions appear next to each other with no code between

“uHn

(see the “?”s), provide an explanation of why the top assertion implies the bottom one.
Below, evalPoly([1, 2, 3], 5) evaluatesthe polynomial 1v® + 2v! + 3v?at the point
where v = 5. In this example, it would return (1 * 5%) + (2 * 5!) + (3 * 52),

{{Pre:0<n}}
float evalPoly(float[] A, float v) {
int i = A.length - 1;

{{ 1
int j = 0;

{{ 1}
float val = A[i];

{{ 1}

{Inv:val = A[i] +A[i+1] v+ ..+ A[n-1]Vandi+j=n-1 }}
while (j != A.length - 1) {

{{ 1
Jj=3+1
{{ 1
i=1i-1;
{{ 1}
{{ 1}
val = val * v + A[i];
{{ 1
}
{{ 1

{{ Post: val = A[0] + A[1] v + A[2] V® + ... + A[n-1] v }}
return val;



