
CSE 331
Software Design & Implementation

Autumn 2023
Section 10 – Final Review



Administrivia
• HW9

– Due tomorrow @11pm

• Final
– Tuesday, 12/12, MGH 389
– Exam A: 2:30 – 4:20
– Exam B: 4:30 – 6:20 
– Please arrive a couple minutes early
– No notecards, all needed definitions will be included

• Final review session
– Monday, 12/11, 7-8:30pm
– CSE1 (Allen), across breakout rooms
– Bring questions related to practice exams or general 

concepts



Course Evals!!
• Please fill them out!
• We appreciate the feedback (TAs and Kevin both)

– We will actually read them, so any suggestions will be 
considered!

• If 50% of responses are completed, we will give everyone an 
additional day to complete HW9!! 🎉🎉
– New on time deadline would be Saturday, 12/9
– Deadline with late day would be Sunday, 12/10



Final topics
• All topics covered by midterm are fair game

(Remember, midterm was largely final practice)
– Reasoning about Recursion
– Reasoning about Loops
– Writing Methods
– Testing

• New topics that may be included:
– Writing the code of a for loop, given the loop idea and invariant.
– Writing or proving correct the methods of classes that implement 

mutable ADTs



ADT
• MutableIntCursor ADT represents a list of integers with the 

ability to insert new characters at the “cursor index” within the list.
– cursor index can be moved forward or backward

• LineCountingCursor implements MutableIntCursor by:
– using the abstract state (an index and a list of values) as its 

concrete state 
– + records the number of newline characters (so class can 

easily, quickly determine the number of lines in the text)

• Reminder: familiar functions on last page of WS!



Problem 1b

Explain, in English, why the facts listed in Pre will be true when the 
function is called:



Problem 1c

Explain, in English, why the facts listed in Post need to be true 
when the function completes in order for insert to be complete:



Problem 2
• Fill in the missing parts of the method so it is correct with the 

given invariant

• Loop idea: 
– skip past elements in this.values until we reach one that 

equals the given number or we hit the end

• Invariant: 
– this.values is split up between skipped and rest, with 

skipped being the front part in reverse order
– no element of skipped is equal to the number m

• Do not write any other loops or call any other methods. The only 
list functions that should be needed are cons and len



Problem 2

1 2 m 3 nilthis.values:



Problem 2

1 2 m 3 nil

1 2 m 3 nil

Easiest way to satisfy the invariant

rest:

skipped: nil

this.values:



Problem 2

1

2 m 3 nil

nil

1 2 m 3 nil

While rest.hd != m (need to check rest != nil first),
remove and append rest.hd to skipped
(cons adds to front which reverses the list which matches 
the invariant)

rest:

skipped:

this.values:



Problem 2

12

m 3 nil

nil

1 2 m 3 nil

rest:

skipped:

this.values:



Problem 2

12

m 3 nil

nil

1 2 m 3 nil

When we exit the loop
- If rest = nil then we didn’t find m
- Otherwise, Index of m is the length of the skipped list 

rest:

skipped:

this.values:



Problem 2



Problem 3
• Fill removeNextLine so it removes all the text on the next line: 

text between the first and second newline characters after the 
cursor index
– remove second newline, but leave cursor index in place
– If there are no newlines after cursor, then do nothing
– If there is only one newline after cursor, remove all text after it

• method of LineCountingCursor, so you can access this.index
and this.values

• Can use any Familiar List Functions from final page and assume 
they’ve been translated to TS

• Hint: split-at function from HW5 may be useful, assume the TS 
translation of it is called splitAt



Problem 3

Index



B

Problem 3

Index

A Index

[A, B] = split(index, values)



B

Problem 3

hi

Index

A Index

[A, B] = split(index, values)

CIndex

[C, D] = splitAt(B, newline)

D

CIndex

OR
\n

No \n after cursor

\n after cursor



B

Problem 3

Index

A Index

[A, B] = split(index, values)

[C, D] = splitAt(B, newline)

CIndex

No change:

No \n after cursor

Index



B

Problem 3

Index

A Index

[A, B] = split(index, values)

CIndex

[C, D] = splitAt(B, newline)

D\n\n after cursor

[E, F] = splitAt(D.tl, newline)
ENo second \n

Second \n E F\n
OR



B

Problem 3

Index

A Index

[A, B] = split(index, values)

CIndex

[C, D] = splitAt(B, newline)

D\n\n after cursor

[E, F] = splitAt(D.tl, newline)
ENo second \n

Remove everything after \n
A CIndex \n



B

Problem 3

Index

A Index

[A, B] = split(index, values)

CIndex

[C, D] = splitAt(B, newline)

D\n\n after cursor

[E, F] = splitAt(D.tl, newline)
Second \n

Remove next line:
A CIndex

E F

F\n

\n



Problem 3


